
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Foreword ... xxi

Introduction .. xxv

Chapter 1: Introduction to SQLTXPLAIN ■ ...1

Chapter 2: The Cost-Based Optimizer Environment ■ ..17

Chapter 3: How Object Statistics Can Make Your Execution Plan Wrong ■ 39

Chapter 4: How Skewness Can Make Your Execution Times Variable ■ 53

Chapter 5: Troubleshooting Query Transformations ■ ..71

Chapter 6: Forcing Execution Plans Through Profiles ■ ...93

Chapter 7: Adaptive Cursor Sharing ■ ..111

Chapter 8: Dynamic Sampling and Cardinality Feedback ■ ...129

Chapter 9: Using SQLTXPLAIN with Data Guard Physical Standby Databases ■ 147

Chapter 10: Comparing Execution Plans ■ ...163

Chapter 11: Building Good Test Cases ■ ...177

Chapter 12: Using XPLORE to Investigate Unexpected Plan Changes ■ 205

Chapter 13: Trace Files, TRCANLZR and Modifying SQLT behavior ■ 231

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

Chapter 14: Running a Health Check ■ ...255

Chapter 15: The Final Word ■ ...281

Appendix A: Installing SQLTXPLAIN ■ ...285

Appendix B: The CBO Parameters (11.2.0.1) ■ ...295

Appendix C: Tool Configuration Parameters ■ ..307

Index ...311

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

his book is intended as a practical guide to an invaluable tool called SQLTXPLAIN, commonly known simply as
SQLT. You may never have heard of it, but if you have anything to do with Oracle tuning, SQLT is one of the most
useful tools you’ll ind. Best of all, it’s freely available from Oracle. All you need to do is learn how to use it.

How This Book Came to Be Written
I’ve been a DBA for over twenty years. In that time, I dealt with many, many tuning problems yet it was only when I
began to work for Oracle that I learned about SQLT. As a part of the tuning team at Oracle Support I used SQLT every
day to solve customers’ most complex tuning problems. I soon realized that my experience was not unique. Outside
Oracle, few DBAs knew that SQLT existed. An even smaller number knew how to use it. Hence the need for this book.

Don’t Buy This Book
If you’re looking for a text on abstract tuning theory or on how to tune “raw” SQL. his book is about how to use SQLT
to do Oracle SQL tuning. he approach used is entirely practical and uses numerous examples to show the SQLT tool
in action.

Do Buy This Book
If you’re a developer or a DBA and are involved with Oracle SQL tuning problems. No matter how complex your
system or how many layers of technology there are between you and your data, getting your query to run eiciently
is where the rubber meets the road. Whether you’re a junior DBA, just starting your career, or an old hand who’s seen
it all before, this book is designed to show you something completely practical that will be useful in your day-to-day
work.

An understanding of SQLT will radically improve your ability to solve tuning problems and will also give you an
efective checklist to use against new code and old.

Tuning problems are among the most complex technical problems around. SQLTXPLAIN is a fantastic tool that
will help you solve them. Prepare to be smitten.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Introduction to SQLTXPLAIN

Welcome to the world of fast Oracle SQL tuning with SQLTXPLAIN, or SQLT as it is typically called. Never heard of
SQLT? You’re not alone. I’d never heard of it before I joined ORACLE, and I had been a DBA for more years than I care
to mention. That’s why I’m writing this book. SQLT is a fantastic tool because it helps you diagnose tuning problems
quickly. What do I mean by that? I mean that in half a day, maximum, you can go from a slow SQL to having an
understanding of why SQL is malfunctioning, and finally, to knowing how to fix the SQL.

Will SQLT fix your SQL? No. Fixing the SQL takes longer. Some tables are so large that it can take days to gather
statistics. It may take a long time to set up the test environment and roll the fix to production. The important point is
that in half a day working with SQLT will give you an explanation. You’ll know why the SQL was slow, or you’ll be able
to explain why it can’t go any faster.

You need to know about SQLT because it will make your life easier. But let me back up a little and tell you more
about what SQLT is, how it came into existence, why you probably haven’t heard of it, and why you should use it for
your Oracle SQL tuning.

What Is SQLT?
SQLT is a set of packages and scripts that produces HTML-formatted reports, some SQL scripts and some text files.
The entire collection of information is packaged in a zip file and often sent to Oracle Support, but you can look at
these files yourself. There are just over a dozen packages and procedures (called “methods”) in SQLT. These packages
and procedures collect different information based on your circumstances. We’ll talk about the packages suitable for a
number of situations later.

What’s the Story of SQLT?
They say that necessity is the mother of invention, and that was certainly the case with SQLT. Oracle support engineers
handle a huge number of tuning problems on a daily basis; problem is, the old methods of linear analysis are just too
slow. You need to see the big picture fast so you can zoom in on the detail and tell the customer what’s wrong. As
a result, Carlos Sierra, a support engineer at the time (now a member of the Oracle Center of Expertise—a team of
experts within Oracle) created SQLT. The routines evolved over many visits to customer sites to a point where they can
gather all the information required quickly and effectively. He then provided easy-to-use procedures for reporting on
those problems.

Carlos Sierra, the genius of SQLT, now spends much of his time improving SQLT code and adapting the SQLT
code to new versions of the RDBMS. He also assists Oracle Tuning Performance engineers with SQL tuning through
the medium of SQLT.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

2

Why Haven’t You Heard of SQLT?
If it’s so useful, why haven’t you heard about SQLT? Oracle has tried to publicize SQLT to the DBA community, but still
I get support calls and talk to DBAs who have never heard of SQLT—or if they have, they’ve never used it. This amazing
tool is free to supported customers, so there’s no cost involved. DBAs need to look at problematic SQL often, and
SQLT is hands down the fastest way to fix a problem. The learning curve may be high, but it’s nowhere near as high as
the alternatives: interpreting raw 10046 trace files or 10053 trace files. Looking through tables of statistics to find the
needle in the haystack, guessing about what might fix the problem and trying it out? No thanks. SQLT is like a cruise
missile that travels across the world right to its target.

Perhaps DBAs are too busy to learn a tool, which is not even mentioned in the release notes for Oracle. It’s not
in the documentation set, it’s not officially part of the product set either. It’s just a tool, written by a talented support
engineer, and it happens to be better than any other tool out there. Let me repeat. It’s free.

It’s also possible that some DBAs are so busy focusing on the obscure minutiae of tuning that they forget the real
world of fixing SQL. Why talk about a package that’s easy to use when you could be talking about esoteric hidden
parameters for situations you’ll never come across? SQLT is a very practical tool.

Whatever the reason, if you haven’t used SQLT before, my mission in this book is to get you up and running as
fast and with as little effort from you as possible. I promise you installing and using SQLT is easy. Just a few simple
concepts, and you’ll be ready to go in 30 minutes.

How Did I Learn About SQLT?
Like the rest of the DBA world (I’ve been a DBA for many years), I hadn’t heard of SQLT until I joined Oracle. It was a
revelation to me. Here was this tool that’s existed for years, which was exactly what I needed many times in the past,
although I’d never used it. Of course I had read many books on tuning in years past: for example, Cary Millsaps’s
classic Optimizing Oracle Performance, and of course Cost-Based Oracle Fundamentals by Jonathan Lewis.

The training course (which was two weeks in total) was so intense that it was described by at least two engineers
as trying to drink water from a fire hydrant. Fear not! This book will make the job of learning to use SQLT much easier.

Now that I’ve used SQLT extensively in day-to-day tuning problems, I can’t imagine managing without it. I want
you to have the same ability. It won’t take long. Stick with me until the end of the book, understand the examples, and
then try and relate them to your own situation. You’ll need a few basic concepts (which I’ll cover later), and then you’ll
be ready to tackle your own tuning problems. Remember to use SQLT regularly even when you don’t have a problem;
this way you can learn to move around the main HTML file quickly to find what you need. Run a SQLT report against
SQL that isn’t a problem. You’ll learn a lot. Stick with me on this amazing journey.

Getting Started with SQLT
Getting started with SQLT couldn’t be easier. I’ve broken the process down into three easy steps.

1. Downloading SQLT

2. Installing SQLT

3. Running your first SQLT report

SQLT will work on many different platforms. Many of my examples will be based on Microsoft Windows, but
Linux or Unix is just as easy to use, and there are almost no differences in the use of SQLT between the platforms. If
there are, I’ll make a note in the text.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

3

How Do You Get a Copy of SQLT?
How do you download SQLT? It’s simple and easy. I just did it to time myself. It took two minutes. Here are the steps to
get the SQLT packages ready to go on your target machine:

1. Find a web browser and log in to My Oracle Support (http://support.oracle.com)

2. Go to the knowledge section and type “SQLT” in the search box. Note 215187.1 entitled
“SQLT (SQLTXPLAIN) – Tool that helps to diagnose a SQL statement performing poorly
[ID 215187.1]” should be at the top of the list.

3. Scroll to the bottom of the note and choose the version of SQLT suitable for your
environment. There are currently versions suitable from 9i to 11 g.

4. Download the zip file (the version I downloaded was 2Mbytes).

5. Unzip the zip file.

You now have the SQLT programs available to you for installation onto any suitable database. You can download
the zip file to a PC and then copy it to a server if needed.

How Do You Install SQLT?
So without further ado, let’s install SQLT so we can do some tuning:

1. Download the SQLT zip file appropriate for your environment (see steps above).

2. Unzip the zip file to a suitable location.

3. Navigate to your “install” directory under the unzipped area (in my case it is C:\Document
and Settings\Stelios\Desktop\SQLT\sqlt\install, your locations will be different).

4. Connect as sys, e.g., sqlplus / as sysdba

5. Make sure your database is running

6. Run the sqcreate.sql script.

7. Select the default for the first option. (We’ll cover more details of the installation in
Appendix A.)

8. Enter and confirm the password for SQLTXPLAIN (the owner of the SQLT packages).

9. Select the tablespace where the SQLTXPLAIN will keep its packages and data
(in my case, USERS).

10. Select the temporary tablespace for the SQLTXPLAIN user (in my case, TEMP).

11. Then enter the username of the user in the database who will use SQLT packages to fix
tuning problems. Typically this is the schema that runs the problematic SQL (in my case
this is STELIOS).

12. Then enter “T”, “D” or “N.” This reflects your license level for the tuning and diagnostics
packs. Most sites have both so you would enter “T”, (this is also the default). My test system
is on my PC (an evaluation platform with no production capability) so I would also enter
“T”. If you have the diagnostics pack, only enter “D”; and if you do not have these licenses,
enter “N”.

The last message you see is “SQCREATE completed. Installation completed successfully.”

www.allitebooks.com

http://support.oracle.com
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

4

Running Your First SQLT Report
Now that SQLT is installed, it is ready to be used. Remember that installing the package is done as sys and that
running the reports is done as the target user. Please also bear in mind that although I have used many examples from
standard schemas available from the Oracle installation files, your platform and exact version of Oracle may well be
different, so please don’t expect your results to be exactly the same as mine. However, your results will be similar to
mine, and the results you see in your environment should still make sense.

1. Now exit SQL and change your directory to ...\SQLT\run. In my case this is C:\Documents
and Settings\Stelios\Desktop\SQLT\sqlt\run. From here log in to SQLPLUS as the
target user.

2. Then enter the following SQL (this is going to be the statement we will tune):

SQL > select count(*) from dba_objects;

3. Then get the SQL_ID value from the following SQL

SQL > select sql_id from v$sqlarea where sql_text like 'select count(*) from
dba_objects%';

In my case the SQL_ID was g4pkmrqrgxg3b.

4. Now we execute our first SQLT tool sqltxtract from the target schema (in this case
STELIOS) with the following command:

SQL > @sqltxtract g4pkmrqrgxg3b

5. Enter the password for SQLTXPLAIN (which you entered during the installation). The last
message you will see if all goes well is “SQLTXTRACT completed”.

6. Now create a zip directory under the run directory and copy the zip file created into the
zip directory. Unzip it.

7. Finally from your favorite browser navigate to and open the file named
sqlt_s <nnnnn> _main.html. The symbols “nnnnn” represent numbers created to make all
SQLT reports unique on your machine. In my case the file is called sqlt_s89906_main.html

Congratulations! You have your first SQLT XTRACT report to look at.

When to Use SQLTXTRACT and When to Use SQLTXECUTE
SQLT XTRACT is the easiest report to create because it does not require the execution of the SQL at the time of the
report generation. The report can be collected after the statement has been executed. SQLTXECUTE, on the other
hand, executes the SQL statement and thus has better run-time information and access to the actual rows returned.
This means it can assess the accuracy of the estimated cardinality of the steps in the execution plan (see “Cardinality
and Selectivity” later in this chapter). SQLTXECUTE will get you more information, but it is not always possible to use
this method, perhaps because you are in a production environment or perhaps the SQL statement is currently taking
three days to run, which is why you are investigating this in the first place. We will look at both SQLTXECUTE and
SQLTXTRACT report (and other SQLT options also). For now we will concentrate on one simple SQLTXTRACT report
on a very simple SQL statement. So let’s dive in.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

5

Your First SQLT Report
Before we get too carried away with all the details of using the SQLT main report, just look at Figure 1-1. It’s the
beginning of a whole new SQLT tuning world. Are you excited? You should be. This header page is just the beginning.
From here we will look at some basic navigation, just so you get an idea of what is available and how SQLT works, in
terms of its navigation. Then we’ll look at what SQLT is actually reporting about the SQL.

Figure 1-1. The top part of the SQLT report shows the links to many areas

Some Simple Navigation
Let’s start with the basics. Each hyperlinked section has a Go to Top hyperlink to get you back to the top. There’s a lot
of information in the various sections, and you can get lost. Other related hyperlinks will be grouped together above
the Go to Top hyperlink. For example, if I clicked on Indexes (the last link under the Tables heading), I would see the
page shown in Figure 1-2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

6

Before we get lost in the SQLT report let’s again look at the header page (Figure 1-1). The main sections cover all
sorts of aspects of the system.

CBO environment•

Cursor sharing•

Adaptive cursor sharing•

SQL Tuning Advisor (STA) report•

Execution plan(s) (there will be more than one plan if the plan changed)•

SQL*Profiles•

Outlines•

Execution statistics•

Table metadata•

Index metadata•

Column definitions•

Foreign keys•

Take a minute and browse through the report.

Figure 1-2. The Indexes section of the report

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

7

Did you notice the hyperlinks on some of the data within the tables? SQLT collected all the information it could
find and cross-referenced it all.

So for example, continuing as before from the main report at the top (Figure 1-1)

1. Click on Indexes, the last heading under Tables.

2. Under the Indexes column of the Indexes heading, the numbers are hyperlinked (see
Figure 1-2). I clicked on 2 of the USERS$ record.

Now you can see the details of the columns in that table (see Figure 1-3). As an example
here we see that the index I_USER2 was used in the execution of my query (the In Plan
column value is set to TRUE).

Figure 1-3. An Index’s detailed information about statistics

3. Now, in the Index Meta column (far right in Figure 1-3), click on the Meta hyperlink for the
I_USER2 index to display the index metadata shown in Figure 1-4.

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

8

Here we see the statement we would need to create this index. Do you have a script to do that? Well SQLT can
get it better and faster. So now that you’ve seen a SQLT report, how do you approach a problem? You’ve opened the
report, and you have one second to decide. Where do you go?

Well, that all depends.

How to Approach a SQLT Report
As with any methodology, different approaches are considered for different circumstances. Once you’ve decided there
is something wrong with your SQL, you could use a SQLT report. Once you have the SQLT report, you are presented
with a header page, which can take you to many different places (no one reads a SQLT report from start to finish in
order). So where do you go from the main page?

If you’re absolutely convinced that the execution plan is wrong, you might go straight to “Execution Plans” and
look at the history of the execution plans. We’ll deal with looking at those in detail later.

Suppose you think there is a general slowdown on the system. Then you might want to look at the “Observations”
section of the report.

Maybe something happened to your statistics, so you’ll certainly need to look at the “Statistics” section of the
report under “Tables.”

All of the sections I’ve mentioned above are sections you will probably refer to for every problem. The idea is to
build up a picture of your SQL statement, understand the statistics related to the query, understand the cost-based
optimizer (CBO) environment and try and get into its “head.” Why did it do what it did? Why does it not relate to
what you think it ought to do? The SQLT report is the explanation from the optimizer telling you why it decided to
do what it did. Barring the odd bug, the CBO usually has a good reason for doing what it did. Your job is to set up the
environment so that the CBO agrees with your worldview and run the SQL faster!

Figure 1-4. Metadata about an index can be seen from the “Meta” hyperlink

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

9

Cardinality and Selectivity
My objective throughout this book, apart from making you a super SQL tuner, is to avoid as much jargon as possible
and explain tuning concepts as simply as possible. After all we’re DBAs, not astrophysicists or rocket scientists.

So before explaining some of these terms it is important to understand why these concepts are key to the CBO
operation and to your understanding of the SQL running on your system. Let’s first look at cardinality. It is defined as
the number of rows expected to be returned for a particular column if a predicate selects it. If there are no statistics for
the table, then the number is pretty much based on heuristics about the number of rows, the minimum and maximum
values, and the number of nulls. If you collect statistics then these statistics help to inform the guess, but it’s still a
guess. If you look at every single row of a table (collecting 100 percent statistics), it might still be a guess because the
data might have changed, or the data may be skewed (we’ll cover skewness later). That dry definition doesn’t really
relate to real life, so let’s look at an example. Click on the “Execution Plans” hyperlink at the top of the SQLT report to
display an execution plan like the one shown in Figure 1-5.

In the “Execution Plan” section, you’ll see the “Estim Card” column. In my example, look at the TABLE ACCESS
FULL OBJ$ step. Under the “Estim Card” column the value is 73,572. Remember cardinality is the number of rows
returned from a step in an execution plan. The CBO (based on the table’s statistics) will have an estimate for the
cardinality. The “Estim Card” column then shows what the CBO expected to get from the step in the query. The 73,572
shows that the CBO expected to get 73,572 records from this step, but in fact got 73,235. So how good was the CBO’s
estimate for the cardinality (the number of rows returned for a step in an execution plan)? In our simple example we
can do a very simple direct comparison by executing the query show below.

Figure 1-5. An execution plan in the “Execution Plan” section

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

10

SQL> select count(*) from dba_objects;
 COUNT(*)

 73235
SQL>

So cardinality is the actual number of rows that will be returned, but of course the optimizer can’t know the
answers in advance. It has to guess. This guess can be good or bad, based on statistics and skewness. Of course,
histograms can help here.

For an example of selectivity, let’s look at the page (see Figure 1-6) we get by selecting Columns from the Tables
options on the main page (refer to Figure 1-1).

Look at the “SYS.IND$ - Table Column” section. From the “Table Columns” page, if we click on the “34” under
the “Column Stats” column, we will see the column statistics for the SYS.IND$ index. Figure 1-7 shows a subset of the
page from the “High Value” column to the “Equality Predicate Cardinality” column. Look at the “Equality Predicate
Selectivity” and “Equality Predicate Cardinality” columns (the last two columns). Look at the values in the first row
for OBJ#.

Figure 1-6. The “Table Column” section of the SQLT report

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

11

Selectivity is 0.000209, and cardinality is 1.
This translates to “I expect to get 1 row back for this equality predicate, which is equivalent to a 0.000209 chance

(1 is certainty 0 is impossible) or in percentage terms I’ll get 0.0209 percent of the entire table if I get the matching
rows back.”

Notice that as the cardinality increases the selectivity also increases. The selectivity only varies between 0 and 1
(or if you prefer 0 percent and 100 percent) and cardinality should only vary between 0 and the total number of rows
in the table (excluding nulls). I say should because these values are based on statistics. What would happen if you
gathered statistics on a partition (say it had 10 million rows) and then you truncate that partition, but don’t tell the
optimizer (i.e., you don’t gather new statistics, or clear the old ones). If you ask the CBO to develop an execution plan
in this case it might expect to get 10 million rows from a predicate against that partition. It might “think” that a full
table scan would be a good plan. It might try to do the wrong thing because it had poor information.

To summarize, cardinality is the count of expected rows, and selectivity is the same thing but on a 0–1 scale. So
why is all this important to the CBO and to the development of good execution plans? The short answer is that the
CBO is working hard for you to develop the quickest and simplest way to get your results. If the CBO has some idea
about how many rows will be returned for steps in the execution plan, then it can try variations in the execution plan
and choose the plan with the least work and the fastest results. This leads into the concept of “cost,” which we will
cover in the next section.

What Is Cost?
Now that we have cardinality for an object we can work with other information derived from the system to calculate a
cost for any operation. Other information from the system includes the following:

Speed of the disks•

Speed of the CPU•

Number of CPUs•

Database block size•

These metrics can be easily extracted from the system and are shown in the SQLT report also (under the
“Environment” section). The amount of I/O and CPU resource used on the system for any particular step can now
be calculated and thus used to derive a definite cost. This is the key concept for all tuning. The optimizer is always
trying to reduce the cost for an operation. I won’t go into details about how these costs are calculated because the
exact values are not important. All you need to know is this: higher is worse, and worse can be based on higher cardinality
(possibly based on out-of-date statistics), and if your disk I/O speeds are wrong (perhaps optimistically low) then full
table scans might be favored when indexes are available. Cost can also be directly translated into elapsed time (on a quiet
system), but that probably isn’t what you need most of the time because you’re almost always trying to get an execution
time to be reduced, i.e., lower cost. As we’ll see in the next section, you can get that information from SQLT. SQLT will also
produce a 10053 trace file in some cases, so you can look at the details of how the cost calculations are made.

Figure 1-7. Selectivity is found in the “Equality Predicate Selectivity” column

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

12

Reading the Execution Plan Section
We saw the execution plan section previously. It looks interesting, and it has a wobbly left edge and lots of hyperlinks.
What does it all mean? This is a fairly simple execution plan, as it doesn’t go on for pages and pages (like SIEBEL or
PeopleSoft execution plans).

There are a number of simple steps to reading an execution plan. I’m sure there’s more than one way of reading
an execution plan, but this is the way I approach the problem. Bear in mind in these examples that if you are familiar
with the pieces of SQL being examined, you may go directly to the section you think is wrong; but in general if you are
seeing the execution plan for the first time, you will start by looking at a few key costs.

The first and most important cost is the overall cost of the entire query. This is always shown as “ID 0” and is
always the first row in the execution plan. In our example shown in Figure 1-5, this is a cost of 256. So to get the cost
for the entire query just look at the first row. This is also the last step to be executed (“Exec Ord” is 18). The execution
order is not top to bottom, the Oracle engine will carry out the steps in the order shown by the value in the “Exec Ord”
column. So if we followed the execution through, the Oracle engine would do the execution in this order:

1. INDEX FULL SCAN I_USER2

2. INDEX FULL SCAN I_USER2

3. TABLE ACCESS FULL OBJ$

4. HASH JOIN

5. HASH JOIN

6. INDEX UNIQUE SCAN I_IND1

7. TABLE ACCESS BY INDEX ROWID IND$

8. INDEX FULL SCAN I_USERS2

9. INDEX RANGE SCAN I_OBJ4

10. NESTED LOOP

11. FILTER

12. INDEX FULL SCAN I_LINK1

13. INDEX RANGE SCAN I_USERS2

14. NESTED LOOPS

15. UNION-ALL

16. VIEW DBA_OBJECTS

17. SORT AGGREGATE

18. SELECT STATEMENT

However, nobody ever represents the plan of a SQL statement like this. What is important to realize is that the
wobbly left edge gives information about how the steps are carried out. The less-indented operations indicate outer
operations that are being carried out on inner (more indented) operations. So for example steps 2, 3, and 4 would be
read as “An index full scan is carried out using I_USERS2, then a full table scan of OBJ$ and the results of these are HASH
JOINED to produce a result set.” Each operation produces results for a less-indented section until the final result is
presented to the SELECT (ID = 0).

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

13

The “Operation” column is also marked with “+” and “–” to indicate sections of equal indentation. This is helpful
in lining up operations to see which result sets an operation is working on. So, for example, it is important to realize
that the HASH JOIN at step 5 is using results from steps 1, 4, 2, and 3. We’ll see more complex examples of these later.
It is also important to realize that the costs shown are aggregate costs for each operation as well. So the cost shown on
the first line is the cost for the entire operation, and we can also see that most of the cost of the entire operation came
from step 3. (SQLT helpfully shows the highest cost operation in red). So let’s look at step 1 (as shown in Figure 1-5) in
more detail. In our simple case this is

"INDEX FULL SCAN I_USER2"

Let’s translate the full line into English: “First get me a full index scan of index I_USERS2. I estimate 93 rows will be
returned which, based on your current system statistics (Single block read time and multi-block read times and CPU
speed), will be a cost of 1.”

The second and third steps are another INDEX FULL SCAN and a TABLE ACCESS FULL of OBJ$. This third step
has a cost of 251. The total cost of the entire SQL statement is 256 (top row). So if were looking to tune this statement
we know that the benefit must come from this third step (it is a cost of 251 out of a total cost of 256). Now place your
cursor over the word “TABLE” on step 3 (see Figure 1-8).

Figure 1-8. More details can be obtained by ‘hovering’ over links

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

14

Notice how information is displayed about the object.

Object#: 18

Owner: SYS

Qblock: SEL$1FF6F973

Alias: O@SEL$4

Current Table Statistics:

Analyzed: 08-JUN-12 22:01:24

TblRows: 73575

Blocks: 905

Sample 73575

Just by hovering your mouse over the object you get its owner, the query block name, when it was last analyzed,
and how big the object is.

Now let’s look at the “Go To” column. Notice the “+” under that column? Click on the one for step 3, and you’ll get
a result like the one in Figure 1-9.

Figure 1-9. More hyperlinks can be revealed by expanding sections on the execution plan

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

15

So right from the execution plan you can go to the “Col Statistics” or the “Stats Versions” or many other things.
You decide where you want to go next, based on what you’ve understood so far and on what you think is wrong
with your execution plan. Now close that expanded area and click on the “+” under the “More” column for step 3
(see Figure 1-10)

Figure 1-10. Here we see an expansion under the “More” heading

Now we see the filter predicates and the projections. These can help you understand which line in the execution
plan the optimizer is considering predicates for and which values are in play for filters.

Just above the first execution plan is a section called “Execution Plans.” This lists all the different execution plans
the Oracle engine has seen for this SQL. Because execution plans can be stored in multiple places in the system, you
could well have multiple entries in the “Execution Plans” section of the report. Its source will be noted (under the
“Source” column). Here is a list of sources I’ve come across:

• GV$SQL_PLAN

• GV$SQLAREA_PLAN_HASH

• PLAN_TABLE

• DBA_SQLTUNE_PLANS

• DBA_HIST_SQL_PLAN

SQLT will look for plans in as many places as possible so that it can you give you a full range of options. When
SQLT gathers this information, it will look at the cost associated with each of these plans and label them with “W”
in red (worst) and “B” in green (best). In my simple test case, the “Best” and “Worst” are the same, as there is only
one execution plan in play. However you’ll notice there are three records: one came from mining the memory
GV$SQL_PLAN, one came from PLAN_TABLE (i.e., an EXPLAIN PLAN) and one came from DBA_SQLTUNE_PLANS,
(SQL Tuning Analyzer) whose source is DBA_SQLTUNE_PLANS.

When you have many records here, perhaps a long history, you can go back and see which plans were best and
try to see why they changed. Noting the timing of a change can sometimes be crucial, as it can help you zoom in on
the change that made things worse.

4

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO SQLTXPLAIN

16

Before we launch into even more detailed use of the “Execution Plans” section, we’ll need more complex
examples.

Join Methods
This book is focused on very practical tuning with SQLT. I try to avoid unnecessary concepts and tuning minutiae.
For this reason I will not cover every join method available or every DBA table that might have some interesting
information about performance or every hint. These are well documented in multiple sources, not least of which
is the Oracle Performance guide (which I recommend you read). However, we need to cover some basic concepts
to ensure we get the maximum benefit from using SQLT. So, for example, here are some simple joins. As its name
implies, a join is a way of “joining” two data sets together: one might contain a person’s name and age and another
table might contain the person’s name and income level. In which case you could “join” these tables to get the names
of people of a particular age and income level. As the name of the operation implies, there must be something to join
the two data sets together: in our case, it’s the person’s name. So what are some simple joins? (i.e., ones we’ll see in
out SQLT reports).

HASH JOINS (HJ) – The smaller table is hashed and placed into memory. The larger table is
then scanned for rows that match the hash value in memory. If the larger and smaller tables
are the wrong way around this is inefficient. If the tables are not large, this is inefficient. If
the smaller table does not fit in memory, then this is more than inefficient: it’s really bad!

NESTED LOOP (NL) – Nested Loop joins are better if the tables are smaller. Notice how in
the execution plan examples above there is a HASH JOIN and a NESTED LOOP. Why was
each chosen for the task? The details of each join method and its associated cost can be
determined from the 10053 trace file. It is a common practice to promote the indexes and
NL by adjusting the optimizer parameters Optimizer_index_cost_adj and optimizer_
index_caching parameters. This is not generally a winning strategy. These parameters
should be set to the defaults of 100 and 0. Work on getting the object and system statistics
right first.

CARTESIAN JOINS – Usually bad. Every row of the first table is used as a key to access every
row of the second table. If you have a very few number of rows in the joining tables this join
is OK. In most production environments, if you see this occurring then something is wrong,
usually statistics.

SORT MERGE JOINS (SMJ) – Generally joined in memory if memory allows. If the
cardinality is high then you would expect to see SMJs and HJs.

Summary
In this chapter we covered the basics of using SQLTXTRACT. This is a simple method of SQLT that does not execute
the SQL statement in question. It extracts the information required from all possible sources and presents this in
a report.

In this chapter we looked at a simple download and install of SQLT. You’ve seen that installing SQLT on a local
database can take very little time, and its use is very simple. The report produced was easy to unzip and can be
used to investigate the SQL performance. In this first example we briefly mentioned cardinality and selectivity and
how these affect the cost-based optimizer’s plans. Now let’s investigate more of SQLT’s features and look at more
complex examples.

17

CHAPTER 2

The Cost-Based Optimizer
Environment

When I’m solving tricky tuning problems, I’m often reminded of the story of the alien who came to earth to try
his hand at driving. He’d read all about it and knew the physics involved in the engine. It sounded like fun. He sat
down in the driver’s seat and turned the ignition; the engine ticked over nicely, and the electrics were on. He put his
seatbelt on and tentatively pressed the accelerator pedal. Nothing happened. Ah! Maybe the handbrake was on.
He released the handbrake and pressed the accelerator again. Nothing happened. Later, standing back from the car
and wondering why he couldn’t get it to go anywhere, he wondered why the roof was in contact with the road.

My rather strange analogy is trying to help point out that before you can tune something, you need to know
what it should look like in broad terms. Is 200ms reasonable for a single block read time? Should system statistics be
collected over a period of 1 minute? Should we be using hash joins for large table joins? There are 1,001 things that to
the practiced eye look wrong, but to the optimizer it’s just the truth.

Just like the alien, the Cost Based Optimizer (CBO) is working out how to get the best performance from your
system. It knows some basic rules and guestimates (heuristics) but doesn’t know about your particular system or data.
You have to tell it about what you have. You have to tell the alien that the black round rubbery things need to be in
contact with the road. If you ‘lie’ to the optimizer, then it could get the execution plan wrong, and by wrong I mean the
plan will perform badly. There are rare cases where heuristics are used inappropriately or there are bugs in the code
that lead the CBO to take shortcuts (Query transformations) that are inappropriate and give the wrong results. Apart
from these, the optimizer generally delivers poor performance because it has poor information to start with. Give it
good information, and you’ll generally get good performance.

So how do you tell if the “environment” is right for your system? In this chapter we’ll look at a number of aspects
of this environment. We’ll start with (often neglected) system statistics and then look at the database parameters
that affect the CBO. We’ll briefly touch on Siebel environments and the have a brief look at histograms (these are
covered in more detail in the next chapter). Finally, we’ll look at both overestimates and underestimates (one of
SQLT’s best features is highlighting these), and then we’ll dive into a real life example, where you can play detective
and look at examples to hone your tuning skills (no peeking at the answer). Without further ado let’s start with
system statistics.

System Statistics
System statistics are an often-neglected part of the cost-based optimizer environment. If no system statistics have
been collected for a system then the SQLT section “Current System Statistics” will show nothing for a number of
important parameters for the system. An example is shown in Figure 2-3. It will guess these values. But why should
you care if these values are not supplied to the optimizer? Without these values the optimizer will apply its best guess
for scaling the timings of a number of crucial operations. This will result in inappropriate indexes being used when a
full table scan would do or vice versa. These settings are so important that in some dynamic environments where the

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

18

workload is changing, for example from the daytime OLTP to a nighttime DW (Data Warehouse) environment, that
different sets of system statistics should be loaded. In this section we’ll look at why these settings affect the optimizer,
how and when they should be collected, and what to look for in a SQLT report.

Figure 2-1. The top section of the SQLT report

Let’s remind ourselves what the first part of the HTML report looks like (see Figure 2-1). Remember this is one
huge HTML page with many sections.

From the main screen, in the Global section, select “CBO System Statistics”. This brings you to the section where
you will see a heading “CBO System Statistics” (See Figure 2-2).

Figure 2-2. The “CBO System Statistics” section

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

19

Now click on “Info System Statistics.” Figure 2-3 shows what you will see.

Figure 2-3. The “Info System Statistics” section

The “Info System Statistics” section shows many pieces of important information about your environment. This
screenshot also shows the “Current System Statistics” and the top of the “Basis and Synthesized Values” section.

Notice, when the System Statistics collection was started. It was begun on 23rd of July 2007 (quite a while ago).
Has the workload changed much since then? Has any new piece of equipment been added? New SAN drives? Faster
disks? All of these could affect the performance characteristics of the system. You could even have a system that needs
a different set of system statistics for different times of the day.

Notice anything else strange about the system statistics? The start and end times are almost identical. The start
and end time should be scheduled to collect information about the system characteristics at the start and end times
of the representative workload. These values mean that they where set at database creation time and never changed.
Look at the “Basis and Synthesized Values” sections shown in Figure 2-4.

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

20

The estimated SREADTIM (single block read time in ms.) and MREADTIM (multi-block read time in ms) are
12ms and 58ms, whereas the actual values (just below) are 3.4ms and 15ms. Are these good values? It can be hard
to tell because modern SAN systems can deliver blistering I/O read rates. For traditional non-SAN systems you would
expect multi-block read times to be higher than single block read times and the normally around 9ms and 22ms.
In this case they are in a reasonable range. The Single block read time is less than the multi-block read time
(you would expect that, right?).

Now look in Figure 2-5 at a screen shot from a different system.

Figure 2-4. From the “Basis and Synthesized Values” section just under “Info System Statistics” section

Figure 2-5. Basis and synthezed values section under Info System Statistics

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

21

Notice anything unusual about the Actual SREADTIM and Actual MREADTIM?
Apart from the fact that the Actual SREADTIM is 6.809ms (a low value) and the Actual MREADTIM is 3.563ms

(also a low value). The problem here is that the Actual MREADTIM is less than the SREADTIM. If you see values
like these, you should be alert to the possibility that full table scans are going to be costed lower than operations that
require single block reads.

What does it mean to the optimizer for MREADTIM to be less than SREADTIM? This is about equivalent to you
telling the optimizer that it’s OK to drive the car upside down with the roof sliding on the road. It’s the wrong way
round. If the optimizer takes the values in Figure 2-5 as the truth, it will favor steps that involve multi-block reads. For
example, the optimizer will favor full table scans. That could be very bad for your run-time execution. If on the other
hand you have a fast SAN system you may well have a low Actual MREADTIM.

The foregoing is just one example how a bad number can lead the optimizer astray. In this specific case you
would be better off having no Actual values and relying on the optimizer’s guesses, which are shown as the estimated
SREADTIM and MREADTIM values. Those guesses would be better than the actual values.

How do you correct a situation like I’ve just described? It’s much easier that you would think. The steps to fix this
kind of problem are shown in the list below:

1. Choose a time period that is representative of your workload. For example, you could have
a daytime workload called WORKLOAD.

2. Create a table to contain the statistics information. In the example below we have called
the table SYSTEM_STATISTICS.

3. Collect the statistics by running the GATHER_SYSTEM_STATS procedure during the chosen
time period.

4. Import those statistics using DBMS_STATS.IMPORT_SYSTEM_STATS.

Let’s look at the steps for collecting the system statistics for a 2-hour interval in more detail. In the first step we create
a table to hold the values we will collect. In the second step we call the routine DBMS_STATS.GATHER_SYSTEM_STATS,
with an INTERVAL parameter of 120 minutes. Bear in mind that the interval parameter should be chosen to reflect the
period of your representative workload.

exec DBMS_STATS.CREATE_STAT_TABLE ('SYS','SYSTEM_STATISTICS');
BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS ('interval',interval => 120, stattab => 'SYSTEM_STATISTICS',
statid => 'WORKLOAD');
END;
/
execute DBMS_STATS.IMPORT_SYSTEM_STATS(stattab => 'SYSTEM_STATISTICS', statid => 'WORKLOAD',
statown => 'SYS');
Once you have done this you can view the values from the SQLT report or from a SELECT statement.

SQL> select * from sys.aux_stats$;

SNAME PNAME PVAL1 PVAL2
------------------------------ ------------------------------ ---------- ------------------
SYSSTATS_INFO STATUS COMPLETED
SYSSTATS_INFO DSTART 09-29-2012 11:01
SYSSTATS_INFO DSTOP 09-29-2012 11:02
SYSSTATS_INFO FLAGS 0
SYSSTATS_MAIN CPUSPEEDNW 972.327
SYSSTATS_MAIN IOSEEKTIM 10
SYSSTATS_MAIN IOTFRSPEED 4096
SYSSTATS_MAIN SREADTIM 8.185

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

22

SYSSTATS_MAIN MREADTIM 55.901
SYSSTATS_MAIN CPUSPEED 972
SYSSTATS_MAIN MBRC
SYSSTATS_MAIN MAXTHR
SYSSTATS_MAIN SLAVETHR

13 rows selected.

If you get adept at doing this you can even set up different statistics tables for different workloads and import
them and delete the old statistics when not needed. To delete the existing statistics you would use

SQL> execute DBMS_STATS.DELETE_SYSTEM_STATS;

One word of caution, however, with setting and deleting system stats. This kind of operation will influence the
behavior of the CBO for every SQL on the system. It follows therefore that any changes to these parameters should be
made carefully and tested thoroughly on a suitable test environment.

Cost-Based Optimizer Parameters
Another input into the CBO’s decision-making process (for developing your execution plan) would be the CBO
parameters. These parameters control various aspects of the cost based optimizer’s behavior. For example,
optimizer_dynamic_sampling controls the level of dynamic sampling to be done for SQL execution. Wouldn’t it be
nice to have a quick look at every system and see the list of parameters that have been changed from the defaults?
Well with SQLT that list is right there under “CBO Environment”.

Figure 2-6 is an example where almost nothing has been changed. It’s simple to tell this because there are
only 2 rows in this section of the SQLT HTML report. The optimizer_mode has been changed from the default.
If you see hundreds of entries here then you should look at the entries carefully and assess if any of the parameters
that have been changed are causing you a problem. This example represents a DBA who likes to leave things
alone.

Figure 2-6. The CBO environment section. Only 2 records indicates a system very close to the default settings

Figure 2-7 shows an example where more than just two parameters have been changed from their default setting.
Now instead of 2 rows of the previous example we have 8 non-default values. Each one of these parameters needs to
be justified.

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

23

We also have 4 hidden parameters set (they are preceded by underscores). In this example each of the hidden
parameters should be carefully researched to see if it can be explained. If you have kept careful records or commented
on your changes you may know why _b_tree_bitmap_plans has been set to FALSE. Often, however, parameters like
these can stay set in a system for years with no explanation.

The following are common explanations:

Somebody changed it a while ago, we don’t know why, and he/she has left now.•

We don’t want to change it in case it breaks something.•

This section is useful and can often give you a clue as to what has been changed in the past (perhaps you’re new
to the current site). Take special note of hidden parameters. Oracle support will take a good look at these and decide
if their reason for being still holds true. It is generally true that hidden parameters are not likely doing you any favors,
especially if you don’t know what they’re for. Naturally, you can’t just remove them from a production system. You
have to execute key SQL statements on a test system and then remove those parameters on that test system to see
what happens to the overall optimizer cost.

Siebel Environment Considerations
Some environments are special just because Oracle engineering have decided that a special set of parameters are
better for them. This is the case with Siebel Systems Customer Relationship Management (CRM) application. There
are hidden parameters that Oracle engineering has determined get the best performance from your system. If your
system is Siebel, then in the “Environment” section you will see something like that shown in Figure 2-8.

Figure 2-7. The CBO environment with many non-standard parameter settings

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

24

The “go to” place for Siebel tuning is the “Performance Tuning Guidelines for Siebel CRM Applications on Oracle
Database” white paper. This can be found in Note 781927.1. There are many useful pieces of information in this
document, but with regard to optimizer parameters, Page 9 lists the non-default parameters that should be set for
good performance. For example, optimizer_index_caching should be set to 0.

Do not even attempt to tune your SQL on a Siebel system until these values are all correct. For example, on the
above Siebel system if there was a performance problem, the first steps would be to fix all the parameters that are
wrong according to Note 781927.1. You cannot hope to get stable performance from a Siebel CRM system unless this
foundation is in place.

Hints
Hints were created to give the DBA and developer some control over what choices the optimizer is allowed to make.
An example hint is USE_NL. In the example below I have created two minimal tables called test and test2, each with
a single row. Not surprisingly if I let the optimizer choose a plan it will use a MERGE JOIN CARTESIAN as there are only
single rows in each of these tables.

Figure 2-8. Example of parameter settings for a Siebel CRM environment

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

25

SQL> select
 test.col1,
 test2.col1
from
 test,
 test2
where
 test.col1=test2.col1;
 COL1 COL1
---------- ----------
 1 1
 1 1
SQL> set autotrace traceonly explain;
SQL> /
Execution Plan
Plan hash value: 1571755046
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		2	52	6 (0)	00:00:01
1	MERGE JOIN CARTESIAN		2	52	6 (0)	00:00:01
2	TABLE ACCESS FULL	TEST2	1	13	3 (0)	00:00:01
3	BUFFER SORT		2	26	3 (0)	00:00:01
* 4	TABLE ACCESS FULL	TEST	2	26	3 (0)	00:00:01
--
Predicate Information (identified by operation id):

 4 - filter("TEST"."COL1" = "TEST2"."COL1")
Note

 - dynamic sampling used for this statement (level=2)
SQL> list
 1* select
 test.col1,
 test2.col1
from
 test,
 test2
where
 test.col1=test2.col1

The command list above shows the previous DML (Data Manipulation Language). I then amended the SQL
to contain a single hint. The syntax for all hints begins with /*+ and ends with */. In the case of USE_NL the portion
inside the bracket can take multiple entries representing tables (either a table name, as in our case, or an alias if used).
Here is the modified query.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

26

SQL> select /*+ USE_NL(test) */ * from test, test2 where test.col1=test2.col1;

Execution Plan
--
Plan hash value: 74026472
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		2	52	6 (0)	00:00:01
1	NESTED LOOPS		2	52	6 (0)	00:00:01
2	TABLE ACCESS FULL	TEST2	1	13	3 (0)	00:00:01
* 3	TABLE ACCESS FULL	TEST	2	26	3 (0)	00:00:01
--
Predicate Information (identified by operation id):

 3 - filter("TEST"."COL1"="TEST2"."COL1")
Note

 - dynamic sampling used for this statement (level=2)

Notice how in the second execution plan a NESTED LOOP was used.
What we’re saying to the optimizer is: “we know you’re not as clever as we are, so ignore the rules and just do

what we think at this point.”
Sometimes using hints is right, but sometimes it’s wrong. Occasionally hints are inherited from old code, and it is

a brave developer who removes them in the hope that performance will improve. Hints are also a form of data input
to the CBOs process of developing an execution plan. Hints are often needed because the other information fed to the
optimizer is wrong. So, for example, if the object statistics are wrong you may need to give the optimizer a hint because
its statistics are wrong.

Is this the correct way to use a hint? No. The problem with using a hint like this is that it may have been right
when it was applied, but it could be wrong later, and in fact it probably is. If you want to tune code, first remove the
hints, let the optimizer run free, while feeling the blades of data between its toes, free of encumbrances. Make sure it
has good recent, statistics, and see what it comes up with.

You can always get the SQL Text that you are evaluating by clicking on the “SQL Text” link from the top section of
the SQLT report. Here’s another example of a query. This time we’re using a USE_NL hint with two aliases

SQL> set autotrace traceonly explain;
SQL> select cust_first_name, amount_sold
 2 from customers C, sales S
 3 where c.cust_id=s.cust_id and amount_sold>100;
SQL> REM
SQL> REM Here is the execution plan
SQL> REM

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

27

Execution Plan
--
Plan hash value: 3549450340
--
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
--
0	SELECT STATEMENT		144K	3107K		1118 (2)	00:00:14
* 1	HASH JOIN		144K	3107K	1304K	1118 (2)	00:00:14
2	TABLE ACCESS FULL	CUSTOMERS	55500	650K		405 (1)	00:00:05
3	PARTITION RANGE ALL		144K	1412K		496 (4)	00:00:06
* 4	TABLE ACCESS FULL	SALES	144K	1412K		496 (4)	00:00:06
--
Predicate Information (identified by operation id):

 1 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - filter("AMOUNT_SOLD">100)

I’ve only shown part of the execution plan because we’re only interested in the operations (under the “Operation”
column). Id 1 shows an operation of hash join. This is probably reasonable as there are over 900,000 rows in sales.
The object with the most rows (in this case SALES) is read first and then CUSTOMERS (with only 55,500 rows). So if
we decided to use a nested loop instead we would add a hint to the code like this:

SQL> select /*+ USE_NL(C S) */
 cust_first_name,
 amount_sold
from
 customers C,
 sales S
where
 c.cust_id=s.cust_id
 and amount_sold>100;
Execution Plan
--
Plan hash value: 4237376444

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		144K	3107K	145K (1)	00:29:03
1	NESTED LOOPS					
2	NESTED LOOPS		144K	3107K	145K (1)	00:29:03
3	PARTITION RANGE ALL		144K	1412K	496 (4)	00:00:06
* 4	TABLE ACCESS FULL	SALES	144K	1412K	496 (4)	00:00:06
* 5	INDEX UNIQUE SCAN	CUSTOMERS_PK	1		0 (0)	00:00:01
6	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	1	12	1 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - filter("AMOUNT_SOLD">100)
 5 - access("C"."CUST_ID"="S"."CUST_ID")

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

28

The hint is enclosed inside “/*+” and “*/” as before. Anything inside these hint brackets will then be considered
by the optimizer. But it is important to realize that the hint (in this case “USE_NL(C S)”) must be valid. Notice that
now the operations have changed. Now the plan is to use nested loops instead of a hash join. The cost is much higher
than the hash join plan at 145,000, but the optimizer has to obey the hint because it is valid. If it is not valid, no error is
generated and the optimizer carries on as if there was no hint. Look at what happens.

SQL> select /*+ MY_HINT(C S) */ cust_first_name, amount_sold
from
 customers C, sales Swhere c.cust_id=s.cust_id and amount_sold>100;

Execution Plan
--
Plan hash value: 3549450340
--
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
--
0	SELECT STATEMENT		144K	3107K		1118 (2)	00:00:14
* 1	HASH JOIN		144K	3107K	1304K	1118 (2)	00:00:14
2	TABLE ACCESS FULL	CUSTOMERS	55500	650K		405 (1)	00:00:05
3	PARTITION RANGE ALL		144K	1412K		496 (4)	00:00:06
* 4	TABLE ACCESS FULL	SALES	144K	1412K		496 (4)	00:00:06
--
Predicate Information (identified by operation id):

 1 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - filter("AMOUNT_SOLD">100)

The optimizer saw my hint, didn’t recognize it as a valid hint, ignored it and did its own thing, which in this case
was to go back to the hash join.

History of Changes
Often when investigating a performance problem, it is crucial to get an idea when SQL performance changed. Vague
reports like “it was fine yesterday” are not precise enough, although they may help you by directing your analysis
to a particular time period in your SQLT report. Every change in the optimizer environment (parameter changes) is
timestamped. Every time an execution changes a new execution plan is created that is also timestamped, every time
an SQL statement is executed its metrics are gathered and stored in the AWR repository. This is the same source of
data that the automatic facilities in Oracle use to suggest improvements in your SQL. SQLT uses these sources to build
a history of the executions of your chosen SQL ID. This mine of information is only one click away from the top of
the SQLT report. Click on the “Performance History” link under the “Plans” heading from the top of the SQLT HTML
report. Depending on how many executions of your SQL there are in the system you may see something like the
screen shot in Figure 2-9. There are other columns in the full HTML report but we’ll limit our discussion to the
“Opt Env Hash Value” for now.

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

29

Look at the “Opt Env Hash Value” for the statement history in Figure 2-9. For the one SQL statement that we are
analyzing with its list og “Begin Time” and “End Times” we see other changes taking place. For example, the plan hash
value changed (for the same SQL statement) and so did the “Opt Env Hash Value”. Its value is 2904154100 until the
17th of February 2012. Then it changes to 3945002051 then back to 2904154100 and then back to 3945002051 (on the
18th of February). Something about the optimizer’s environment changed on those dates. Did the change improve
the situation or make it worse? Notice that every time the optimizer hash value changes, the hash value of the plan
changes also. Somebody or something is changing the optimizer’s environment and affecting the execution plan.

Column Statistics
One of the example SQLT reports (the first one we looked at) had the following line in the observation:

TABLE SYS.OBJ$ Table contains 4 column(s) referenced in predicates where the number of distinct values does
not match the number of buckets.

If I follow the link to the column statistics (from the top section of the main HTML report, click on “Columns”
then “Column Statistics”), I can see the results in Figure 2-10.

Figure 2-9. The optimizer Env Hash Value changed on the 22nd of February from 3945002051 to 2904154100. This
means something in the CBO enviroment changed on that date

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

30

The second line of statistics is for the OWNER# table column. Look toward the right at the Num Distinct value.
You’ll see that it is 30, representing that number of estimated distinct values. At the time the statistics were collected
there probably were 30 or so distinct values. But notice the “Histogram” column! It shows a FREQUENCY type
histogram with 25 buckets. In a FREQUENCY type histogram each possible value has a bucket in which is kept the
number of values for that value. So for example if every value from 1 to 255 had only one value then each bucket
would contain a “1”. If the first bucket (labeled “1” had 300 in it, this would mean that the value 1 had been found
300 times in the data. These numbers kept in the buckets are then used by the optimizer to calculate costs for
retrieving data related to that value. So in our example above retrieving a “1” would be more costly than retrieving
a “2” from the same table (because there are more values that are “1”s). If we had 10 buckets (each with their
FREQUENCY value) and then we attempt to retrieve some data and find an “11”, then the optimizer has to guess that
this new value was never collected and makes certain assumptions about the values likelihood (such as for higher
and lower than the maximum values) the likelihood drops off dramatically as we go above the maximum value or
below the minimum value. Values that have no buckets in the middle of the range are interpolated. So if you have
less than 255 buckets, there is no good reason to have less than the actual number of buckets in a FREQUENCY
histogram. That doesn’t make any sense. The result of this kind of anomaly is that the histogram information kept for
the OWNER# column will have five distinct values missing. If the distinct values are popular, and if the query you are
troubleshooting happens to use them in a predicate, the optimizer will have to guess their cardinality.

Imagine for example, the following situation:

1. Imagine a two bucket histogram with “STELIOS” and “STEVEN”. Now we add a third
bucket “STEPHAN”, who happens to be the biggest owner of objects in OBJ$.

2. Let’s say the histogram values for STELIOS and STEVEN as follows:

STELIOS – 100 objects•

STEVEN – 110 objects•

This means that for this particular table STELIOS has 100 records for objects he owns and •
STEVEN has 110 objects that he owns. So when the histogram was created the buckets for
STELIOS and STEVEN were filled with 100 and 110.

3. Further say that STEPHAN really owns 500 objects, so he has 500 records in the table. The
optimizer doesn’t know that though, because STEPHAN was created at some point after
statistics were collected.

The optimizer now guesses the cardinality of STEPHAN as 105, when in fact STEPHAN has 500 objects.
Because STEPHAN falls between STELIOS and STEVEN (alphabetically speaking), the optimizer presumes the Num
Distinct value for STEPHAN falls between the values for the other two users (105 is the average of the two adjacent,
alphabetically speaking, buckets. The result is that the CBO’s guess for cardinality will be a long way out. We would
see this in the execution plan (as an under estimate, if we ran a SQLT XECUTE), and we would drill into the OWNER#
column and see that the column statistics were wrong. To fix the problem, we would gather statistics for SYS.OBJ$. In
this case, of course, since the example we used was a SYS object there are special procedures for gathering statistics, but
generally this kind of problem will occur on a user table and normal DBMS_STATS gathering procedures should be used.

Figure 2-10. Column statistics

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

31

Out-of-Range Values
The situation the CBO is left with when it has to guess the cardinality between two values is bad enough but is not
as bad as the situation when the value in a predicate is out of range: either larger than the largest value seen by
the statistics or smaller than the smallest value seen by the statistics. In these cases the optimizer assumes that
the estimated value for the out of range value tails off towards zero. If the value is well above the highest value, the
optimizer may estimate a very low cardinality, say 1. A cardinality of 1 might persuade the optimizer to try a Cartesian
join, which would result in very poor performance if the actual cardinality was 10,000. The method of solving such a
problem would be the same.

1. Get the execution plan with XECUTE.

2. Look at the execution plan in the Execution Plan section and look at the predicates under
“more” as described earlier.

3. Look at the statistics for the columns in the predicates and see if there is something wrong.
Examples of signs of trouble would be

a. A missing bucket (as described in the previous section)

b. No histograms but highly skewed data

Out-of-range values can be particularly troublesome when data is being inserted at the higher or lower ends
of the current data set. In any case by studying the histograms that appear in SQLT you have a good chance of
understanding your data and how it changes with time. This is invaluable information for designing a strategy to tune
your SQL or collecting good statistics.

Over Estimates and Under Estimates
Now let’s look at a sample of a piece of SQL having so many joins that the number of operations is up to 96.
See Figure 2-11, which shows a small portion of the resulting execution plan.

Figure 2-11. A small part of the execution plan, with 96 steps

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

32

How do we handle an execution plan that has 96 steps, or more? Do we hand that plan over to development and
tell them to tune it? With SQLT you don’t need to do this.

Let’s look at this page in more detail, by zooming in on the top right hand portion and look at the over and under
estimates part of the screen (see Figure 2-12).

Figure 2-12. The top right hand portion of the section showing the execution plan’s over and under estimates

Figure 2-13. Over and under estimated values can be good clues

We know that Figure 2-12 is a SQLT XECUTE report, (we know this because we have over and under estimate
values in the report). But what are these over and under estimates? The numbers in the “Last Over/Under Estimate”
column, represent by how many factors the actual number of rows expected by the optimizer for that operation is
wrong. The rows returned is also dependent on the rows returned from the previous operation. So, for example, if we
followed the operation count step by step from “Exec Ord” (see Figure 2-11), we would have these steps:

1. INDEX RANGE SCAN actually returned 948 rows

2. INDEX RANGE SCAN actually returned 948 rows

3. The result of step 1 and 2 was fed into a NESTED LOOP which actually returned 948 rows

4. INDEX RANGE SCAN actually returned 948 rows

5. NESTED LOOP (of the previous step with result of step 3)

And so on. The best way to approach this kind of problem is to read the steps in the execution plan, understand
them, look at the over and under estimates and from there determine where to focus your attention.

Now look at Figure 2-13. Step ID 34 (which is the third line in Figure 2-13 and the 33rd step in the execution plan.
Remember the execution order is shown by the numbers immediately to the left of the operation names e.g. INDEX
RANGE SCAN) shows an under estimate of 11,984. This NESTED LOOP Is a result of the sections below it. We can drill
into why the estimates are as they are by clicking on the “+” in the “More” column. From the “More” column we can
look at the access predicates and see why the estimated cardinality and the actual rows returned diverged.

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

33

So for large statements like this, we work on each access predicate, each under and over estimate, working from
the biggest estimation error to the smallest until we know the reason for each. In some cases, the cause will be stale
statistics. In other cases, it will be skewed data. With SQLT, looking at a 200-line execution plan is no longer a thing
to be feared. If you address each error as far as the optimizer is concerned (it expected 10 rows and got 1000) you can,
step by step, fix the execution plan. You don’t need hints to twist the CBO into the shape you guess might be right. You
just need to make sure it has good statistics for system performance, single and multiblock read times, CPU speed and
object statistics. Once you have all the right statistics in place, the optimizer will generate a good plan. If the execution
plan is sometimes right and sometimes wrong, then you could be dealing with skewed data, in which case you’ll need
to consider the use of histograms. We discuss skewness as a special topic in much more detail in Chapter 4.

The Case of the Mysterious Change
Now that you’ve learned a little bit about SQLT and how to use it, we can look at an example without any prior
knowledge of what the problem might be. Here is the scenario:

A developer comes to you and says his SQL was fine up until 3pm the previous day. It was doing
hash joins as he wanted and expected, so he went to lunch. When he came back the plan had
changed completely. All sorts of weird bit map indexes are being used. His data hasn’t changed,
and he hasn’t collected any new statistics. What happened? He ends by saying “Honest, I didn’t
change anything.”

Once you’ve confirmed that the data has not changed, and no-one has added any new indexes (or dropped any),
you ask for a SQLT XECUTE report (as the SQL is fairly short running and this is a development system).

Once you have that you look at the execution plans. The plan in Figure 2-14 happens to be the one you view first.

Figure 2-14. Execution plan being investigated

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

34

Looking at the plan, you can confirm what the developer said about a “weird” execution plan with strange bit
map indexes. In fact though, there is nothing strange about this plan. It’s just that the first step is:

... BITMAP INDEX FULL SCAN PRODUCTS_PROD_STATUS_BIX

This step was not in the developer’s original plan. Hence the reason the developer perceives it as strange. For the
one SQL statement the developer was working with we suspect that there are at least 2 execution plans (there can be
dozens of execution plans for the one SQL statement, and SQLT captures them all).

Further down in the list of execution plans, we see that there are indeed plans using hash joins and full table
scans. See Figure 2-15, which shows a different execution plan for the same SQL that the developer is working with.
In this execution plan, which returns the same rows as the previous execution plan, the overall cost is 908.

Figure 2-15. An execution plan showing a hash join

So far we know there was a plan involving a hash join and bitmap indexes and that earlier there were plans with
full table scans. If we look at the times of the statistics collection we see that indeed the statistics were gathered before
the execution of these queries. This is a good thing, as statistics should be collected before the execution of a query!

Note ■ As an aside, the ability of SQLT to present all relevant information quickly and easily is its greatest strength.

It takes the guesswork out of detective work. Without SQLT, you would probably have to dig out a query to show you

the time that the statistics were collected. With SQLT, the time of the collection of the statistics is right there in the report.

You can check it while still thinking about the question!

So, the statistics didn’t change and the SQL text didn’t change. It’s possible that an index was added sometime
over lunchtime. You can check that by looking at the objects section of the report, as shown in Figure 2-16.

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

35

The objects section in Figure 2-16 will confirm the creation date of the index PRODUCTION_PROD_STATUS_BIX.
As you can see, the index used in the BITMAP INDEX FULL SCAN was created long ago. So where are we now?

Let’s review the facts:

No new indexes have been added.•

The plan has changed—it uses more indexes.•

The statistics haven’t changed.•

Now you need to consider what else can change an execution plan. Here are some possibilities:

System statistics. We check those, and they seem OK. Knowing what normal looks like •
helps here.

Hints. We look to be sure. There are no hints in the SQL text.•

CBO parameters. We look and see the values in Figure • 2-17.

Figure 2-16. Object information and creation times

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

36

Figure 2-17 shows statistics_level, _parallel_syspls_obey_force, and optimizer_index_cost_adj. This is in the section
“Non-Default CBO Parameters”, so you know they are not normal values. As optimizer_index_cost_adj is a parameter for
adjusting the cost used by the optimizer for indexes this may have something to do with our change in execution plan.
Then notice that the “Observations” section (see Figure 2-18) highlights that there are non-standard parameters.

Figure 2-17. The CBO environment section

Figure 2-18. The “Observations” section of the HTML report shows non-default parameter observations, in this case 1
non-default parameter

If you look up optimizer_index_cost_adj, you will see that its default is 100 not 1. So now you have a working
theory: The problem could lie with that parameter.

Now you can go to the users terminal, run his query, set the session value for optimizer_index_cost_adj to 100,
re-run the query and see the different execution plan. We see the results below.

Execution Plan
--
Plan hash value: 725901306
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time ||
--
0	SELECT STATEMENT		5557	303K	908 (3)	00:00:11	
* 1	HASH JOIN		5557	303K	908 (3)	00:00:11	
2	TABLE ACCESS FULL	PRODUCTS	72	2160	3 (0)	00:00:01	
* 3	HASH JOIN		5557	141K	904 (3)	00:00:11	
* 4	TABLE ACCESS FULL	CUSTOMERS	43	516	405 (1)	00:00:05	
5	PARTITION RANGE ALL		918K	12M	494 (3)	00:00:06	
6	TABLE ACCESS FULL	SALES	918K	12M	494 (3)	00:00:06	
--

CHAPTER 2 ■ THE COST-BASED OPTIMIZER ENVIRONMENT

37

Predicate Information (identified by operation id):

 1 - access("S"."PROD_ID"="P"."PROD_ID")
 3 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - filter("C"."CUST_FIRST_NAME"='Theodorick')
SQL> alter session set optimizer_index_cost_adj=1;
Session altered.
SQL> @q2
Execution Plan
Plan hash value: 665279032

Id	Operation	Name	Rows	Bytes	Cost(%CPU)
0	SELECT STATEMENT		5557	303K	78 (7)
* 1	HASH JOIN		5557	303K	78 (7)
2	TABLE ACCESS BY INDEX ROWID	PRODUCTS	72	2160	1 (0)
3	BITMAP CONVERSION TO ROWIDS				
4	BITMAP INDEX FULL SCAN	PRODUCTS_PROD_STATUS_BIX			
5	NESTED LOOPS				
6	NESTED LOOPS		5557	141K	76 (6)
* 7	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	43	516	26 (4)
8	BITMAP CONVERSION TO ROWIDS				
9	BITMAP INDEX FULL SCAN	CUSTOMERS_GENDER_BIX			
10	PARTITION RANGE ALL				
11	BITMAP CONVERSION TO ROWIDS				
* 12	BITMAP INDEX SINGLE VALUE	SALES_CUST_BIX			
13	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	130	1820	76 (6)
Predicate Information (identified by operation id):
 1 - access("S"."PROD_ID"="P"."PROD_ID")
 7 - filter("C"."CUST_FIRST_NAME"='Theodorick')
 12 - access("C"."CUST_ID"="S"."CUST_ID")

Now we have a cause and a fix, which can be applied to just the one session or to the entire system.
The next step of course is to find out why optimizer_index_cost_adj was set, but that’s a different story,

involving the junior DBA (or at least hopefully not you!) who set the parameter at what he thought was session level
but turned out to be system level.

Summary
In the chapter we learned about the inputs to the cost-based optimizer’s algorithm and how these inputs affect
the optimizer. For the optimizer to work effectively and efficiently these inputs need to be considered and set up
in a way that reflects the usage of your environment and business requirements. SQLTXPLAIN helps with all of
the environmental considerations by collecting information and displaying it in a way that is easy to understand.
SQLTXPLAIN also helpfully highlights those elements that are out of the ordinary so that you can consider them more
critically and decide if those elements are needed and are what you intended. In the next chapter we consider one of
the most important aspects of the CBO environment, the object statistics. These take the most time to collect by far
and are very frequently the cause of performance problems. We’ll look at the effect of lack of statistics, poor timing of
statistics, and other elements of this important maintenance job.

39

CHAPTER 3

How Object Statistics Can Make Your
Execution Plan Wrong

In this chapter we’ll discuss what is considered a very important subject if you are tuning SQL. Gathering object
statistics is crucial; this is why Oracle has spent so much time and effort making the statistics collection process as
easy and painless as possible. They know that under most circumstances, DBAs who are under pressure to get their
work done as quickly as possible, in the tiny maintenance windows they are allowed, will opt for the easiest and
simplest way forward. If there is a check box that says “click me, all your statistics worries will be over,” they’ll click it
and move on to the next problem.

The automated procedure has, of course, improved over the years, and the latest algorithms for automatically
collecting statistics on objects (and on columns especially) are very sophisticated. However, this does not mean
you can ignore them. You need to pay attention to what’s being collected and make sure it’s appropriate for your
data structures and queries. In this chapter we’ll cover how partitions affect your plans and statistics capture.
We’ll also look at how to deal with sampling errors and how to lock statistics and when this should be done. If this
sounds boring, then that’s where SQLT steps in and makes the whole process simpler and quicker. Let’s start with
object statistics.

What Are Statistics?
When SQL performs badly, poor-quality statistics are the most common cause. Poor-quality statistics cover a wide
range of possible deficiencies:

Inadequate sample sizes.•

Infrequently collected samples.•

No samples on some objects.•

Collecting histograms when not needed.•

Not collecting histograms when needed.•

Collecting statistics at the wrong time.•

Collecting very small sample sizes on histograms.•

Not using more advanced options like extended statistics to set up correlation between related •
columns.

Relying on auto sample collections and not checking what has been collected.•

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

40

It is crucial to realize that the mission statement of the cost-based optimizer (CBO) is to develop an execution
plan that runs fast and to develop it quickly. Let’s break that down a little:

“Develop quickly.” The optimizer has very little time to parse or to get the statistics for the •
object, or to try quite a few variations in join methods, not to mention to check for SQL
optimizations and develop what it considers a good plan. It can’t spend a long time doing this,
otherwise, working out the plan could take longer than doing the work.

“Runs fast.” Here, the key idea is that “wall clock time” is what’s important. The CBO is not •
trying to minimize I/Os or CPU cycles, it’s just trying to reduce the elapsed time. If you have
multiple CPUs, and the CBO can use them effectively, it will choose a parallel execution plan.

Chapter 1 discussed cardinality, which is the number of rows that satisfy a predicate. This means that the cost of
any operation is made up of three operation classes:

Cost of single block reads•

Cost of multi-block reads•

Cost of the CPU used to do everything•

When you see a cost of 1,000, what does that actually mean? An operation in the execution plan with a cost of
1,000 means that the time taken will be approximately the cost of doing 1,000 single-block reads. So in this case
1,000 x 12 ms, which gives 12 seconds (12 ms is a typical single- block read time).

So what steps does the CBO take to determine the best execution plan? In very broad terms the query is
transformed (put in any shortcuts that are applicable), then plans are generated by looking at the size of the tables
and deciding which table will be the inner and which will be the outer table in joins. Different join orders are tried and
different access methods are tried. By “tried” I mean that the optimizer will go through a limited number of steps
(its aim is to develop a plan quickly, remember) to calculate a cost for each of them and by a process of elimination
get to the best plan. Sometimes the options the optimizer tries are not a complete list of plans, and this means it could
miss the best plan; but this is extremely rare.

This is the estimation phase of the operation. If the operation being evaluated is a full table scan, this will be
estimated based on the number of rows, the average length of the rows, the speed of the disk sub-system and so on.

Now that we know what the optimizer is doing to try and get you the right plan, we can look at what can go wrong
when the object statistics are misleading.

Object Statistics
The main components comprising object statistics are tables and indexes. To simplify the discussion, we will mainly
look at table statistics, but the same principles will apply to all objects. In the estimation phase of the hard parsing
mentioned above, where the size of tables is estimated and joins are chosen, the number of rows in the table is
crucial. A simple example would be a choice between a nested loop or a hash join. If the number of rows is wrong,
then the join method may be wrong. Other ways in which statistics can be wrong is by being out of date. Let’s look at
the example in Figure 3-1. In this example we see “Table Statistics” for TABLE_A, a non-partitioned table with a Num
Rows value of 87,116, which was 100 percent analyzed.

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

41

Object statistics are a vital input to the CBO, but even these can lead the optimizer astray when the statistics are
out of date. The CBO also uses past execution history to determine if it needs better sampling (cardinality feedback) or
makes use of bind peeking to determine which of many potential execution plans to use. Many people rely on setting
everything on AUTO but this is not a panacea. If you don’t understand and monitor what the auto settings are doing
for you, you may not spot errors when they happen.

Just to clarify, in the very simplest terms, why does the optimizer get it wrong when the statistics are out of date?
After all once you’ve collected all that statistical information about your tables, why collect it again? Let’s do a thought
experiment just like Einstein sitting in the trolley bus in Vienna.

Imagine you’ve been told there are few rows in a partition (<1,000 rows). You’re probably going to do a
full table scan and not use the index, but if your statistics are out of date and you’ve had a massive data load
(say 2.5 million rows) since the last time they ran and all of them match your predicate, then your plan is going to
be sub-optimal. That’s tuning-speak for “regressed,” which is also tuning-speak for “too slow for your manager.”
This underlines the importance of collecting statistics at the right time; after the data load, not before.

So far we’ve mentioned table statistics and how these statistics need to be of the right quality and of a timely
nature. As data sets grew larger and larger over the years, so too did tables grow larger. Some individual tables
became very large (Terabytes in size). This made handling these tables more difficult, purely because operations on
these tables took longer. Oracle Corporation saw this trend early on and introduced table partitioning. These mini
tables split a large table into smaller pieces partitioned by different keys. A common key is a date. So one partition
of a table might cover 2012. This limited the size of these partitions and allowed operations to be carried out on
individual partitions. This was a great innovation (that has a license cost associated with it) that simplified many
day-to-day tasks for the DBA and allowed some great optimizer opportunities for SQL improvement. For example,
if a partition is partitioned by date and you use a date in your predicate you might be able to use partition pruning,
which only looks at the matching partitions. With this feature comes great opportunities for improvement in
response times but also a greater possibility you’ll get it wrong. Just like tables, partitions need to have good statistics
gathered for them to work effectively.

Partitions
Partitions are a great way to deal with large data sets, especially ones that are growing constantly. Use a range
partition, or even better, an interval partition. These tools allow “old” data and “new” data to be separated and
treated differently, perhaps archiving old data or compressing it. Whatever the reason, many institutions use

Figure 3-1. In the “Table Statistics” section you can see the number of rows in a table, the sample size, and the
percentage of the total data set that this sample represents

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

42

For the recently finished partition, any new data added will not result in a huge change in the actual data versus
the statistics, but for the newly created partition the optimizer currently thinks there are zero rows in this partition.
How will this affect the execution plan if there are now 10,000 rows just a few hours after the statistics were collected?
This kind of “initialization” of partitions can have a huge impact on execution plans, the kind of impact that comes
and goes with the time of the month. Bad on the first of the month, then gradually better.

These types of situations require careful timing of statistics collections and good samples. During the time just
after the creation of a new partition, there may be periods of time when a higher sample collection percentage of a
partition is beneficial in order to collect any unusually skewed data in that time partition. Just being aware of what is
(or could) be happening, is half the battle. If more statistics collections are not an option soon after the load, then you
may have to resort to SQL Profiles or even hints.

Stale Statistics
From the point of view of SQLT if more than 10 percent of the data in a table has changed then the statistics are
marked with a “YES” in the “Stale Stats” column. In the example below (Figure 3-3) you can see an index with stale
statistics.

Figure 3-2. A newly created partition will have different characteristics than an old partition. In this case, the number of
partitions in MAIN_TABLE_201202 is zero

partitioning to organize their data. Especially with partitions based on date, it is common to have a new partition
created which has zero or very few rows just after it is created (see Figure 3-2 for an example of this situation). The
new partition MAIN_TABE_201202 has zero rows (it’s only just been created), but the other partitions have millions.

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

43

What should you do with this information? That depends. Sometimes stale statistics are not a problem; it may
be that even though the table has changed by more than 10 percent, the data could still be the same statistically.
Ten percent is a pretty arbitrary number, and in some situations you may decide that it’s too low or too high. If so, you
can always change it

SQL> exec dbms_stats.set_table_prefs(null,'USER2','STALE_PERCENT',5)

Having said that, what should you do if you see “YES” in the Stale Stats column for a particular table or index?
The simple answer is (once again) “it depends.” It’s like a murder mystery. If you already suspect that the butler did it,
and then you see he has a gun in his pocket, that might be a good lead.

The point here is that the column would be a clue that something was wrong, and that it might be materially
important in your current investigation. For example, suppose you have a table with an interval partition created and
loaded with data every day. Its statistics are going to be STALE unless you run statistics collection every day after you
load data in a new partition. The key is to realize that statistics collection is a tool provided by Oracle that you can use
in many different ways. That control must be informed by your knowledge of the architecture, the data model, and the
queries you expect on your database.

Sampling Size
This is one of the most hotly argued points of statistics collection. Many sites depend on the DBMS_STATS.AUTO_
SAMPLE_SIZE, and this is a good choice for some if not most situations, but it’s not perfect. It’s just a good starting
point. If you have no problems with your queries, and your statistics run in a reasonable time, then leave the defaults
and go do something more useful.

If you struggle to collect the level of statistics you need to get your online day working efficiently, you may
want to look closely at the statistics you are gathering. If 100 percent is not possible, then work out how much time
you do have, and try to aim for that percentage. Look at what you are collecting and see if all of it is needed. If
you are gathering schema stats, then ask yourself: Are all the tables in the schema being used? Are you collecting
statistics on columns with no skewness? In such situations you are wasting resources collecting information that
will make no difference to the optimizer. It stands to reason that changing statistics collection sample sizes should
be done carefully and in small steps, with enough time between changes to evaluate the effect. This is what test
systems are for.

Figure 3-3. An index row is shown with “Stale Stats” as “YES” in this example, indicating stale statistics for this index

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

44

You can see what you have set up on the system by clicking on the “DBMS_STATS” setup hyperlink from the SQLT
report (Figure 3-4).

Figure 3-4. It’s always good to check what DBMS_STATS preferences you have. In this example everything is set to
the defaults

Here you can see the DBMS_STATS preferences. Everything is set to AUTO. The sample size is
DBMS_STATS.AUTO_SAMPLE_SIZE; Cascade is set to DBMS_STATS.AUTO_CASCADE; and Method Opt is set to
FOR ALL COLUMNS SIZE AUTO.

Do any of these settings cause problems? Generally not. Sometimes, however, the sample sizes can be very small.
This is a deliberate attempt by the algorithm designers to reduce the amount of time spent gathering statistics on
these columns. If too many samples are similar, then the algorithm will decide that there is no point in looking any
further and will finish collecting for the column. If from the top of the SQLT report we click on “columns” we are able
to see the “Table Columns” area of the report. Here we can see column statistics. Of special interest are the sample
sizes and the percentage that these represent (about halfway across the report). See Figure 3-5 for an example of this
area (I’ve only shown columns 8 to 12 of the report) Notice that some sample sizes are extremely small.

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

45

So how do we get such small sample sizes? Imagine organizing your socks. You’re a real fan of socks, so you
have ten drawers full of socks. You want to know how many types of socks you have. You look in the first drawer and
pick a pair of socks at random. Black. The second pair is also black, and the third. Do you keep going? Or do you
now assume all the socks are black? You see the problem. The algorithm is trying to be efficient and will sample
randomly, but if it is unlucky it may get too many similar samples and give up. What if there are millions of socks
and they are all black except one pair (gold with silver stripes). You probably will not find that pair in your random
sample. But suppose further that you love those gold-and-silvery striped socks and you want to wear them every day.
In this case you will always do a full table scan of your sock drawer (as you think most socks are black and you think
that all colored socks you look for will have the same distribution). This sounds counterintuitive, but you need to see
that the optimizer has no idea about your actual data distribution in that column, it only has a sample (and a very
small one). It then applies the rules it has worked out for that drawer for all sock searches. In fact your sock color
distribution is highly skewed, and the one rare sock pair is the one you want to query all the time. Data is exactly the
same. Random samples may not pick up the rare skewed values and if these are popular in queries, you may need to
adjust your column sample size.

How to Gather Statistics
SQLT can help you come up with a methodology to use when creating a plan for gathering statistics. For
pre-production environments with a realistic workload you’ll find it sensible to run a SQLT report on key SQL
statements (the ones performing badly) and look at the overall performance. Don’t rely on the overall runtime alone
to decide if your workload is going to be OK. Choose the top SQLs, as identified by AWR or SQL Tuning Advisor. You
can even pick them off Enterprise Manager (see Figure 3-6).

Figure 3-5. In this section of the “Column Statistics” example (found by clicking on the “Columns” hyperlink from the
top of the report) the auto sampling size has collected very small sample sizes of 0.3 percent

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

46

Figure 3-7. If your table statistics are very volatile, you may be better off locking them

Then run a SQLT XTRACT report and look at the statistics for these SQLs. Remember, you’ve picked the heavy
hitters on the system so you need to tune these SQLs’ statistics gathering to improve their performance (if possible)
while having no adverse effect on other queries. If you can see small sample sizes, which are adversely affecting
performance, then you have a candidate for statistics collection amendments.

In 11g you can set preferences for statistics gathering at many granular levels; at the database level
(dbms_stats.set_database_prefs) the schema level (dbms_stats.set_schema_prefs), or the table level
(dbms_stats.set_table_prefs). Don’t just increase the percentage blindly because performance is bad. Look at
the SQL that performs badly and tune those SQL statements. Turning up all statistics to 100 percent will just eat up
resources and in some cases will not collect enough statistics on columns. This is why it is important to look at what is
actually happening.

Saving and Restoring and Locking Statistics
Saving and restoring statistics can be extremely useful. In an earlier example, you saw that collecting statistics at
the wrong time could break your execution plan. If you collected statistics when a table was empty you need to
make another statistics collection when the table has a representative data set in it. On the other hand, if you collect
statistics when the data in the table are representative, you can save that collection and later restore it for that table.
This should allow you to represent the newly loaded table correctly, while collecting statistics at a convenient time.

You can also lock statistics from a convenient time.

Figure 3-6. You can even select the Top SQL to investigate from OEM

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

47

Here is an example sequence to collect statistics on an object and save them to a table called MYSTATS2.

SQL> create table test2 as select object_id from dba_objects;

Table created.

SQL> exec dbms_stats.gather_table_stats('STELIOS','TEST2');

PL/SQL procedure successfully completed.

SQL> exec dbms_stats.create_stat_table('STELIOS','MYSTATS2');

PL/SQL procedure successfully completed.

SQL> delete from test2;

73419 rows deleted.

SQL> commit;

Commit complete.

SQL> select count(*) from test2;

 COUNT(*)

 0

SQL> exec dbms_stats.import_table_stats('STELIOS','TEST2',null,'MYSTATS2');

PL/SQL procedure successfully completed.

SQL>

These simple steps are all that is required to save statistics for later use. This is what SQLT does for you when you
collect information about an SQL statement. The statistics for the objects are collected together and placed into the
ZIP file so you can build test cases where a query will work as if it were on production but requires no data. We’ll look
at creating a test case in Chapter 11. It is one of the most useful tools you get with SQLT.

The Case of the Midnight Truncate
Time to look at the second case in our detective series. You’re new on site and see a query with lots of hints. When you
ask about it and why it has so many hints, you’re told that the execution plan is wrong if the hints are removed. You
also notice that cartesian joins have been disabled with _optimizer_cartesian_enabled=FALSE (see Figure 3-8).

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

48

Now I’m not suggesting that you leap into every situation and remove hints without thinking, but SQLs with hints
are sometimes a sign of something else that is going wrong. Usually the culprit is Moriarty, I mean statistics, of course!
Don’t be prejudiced, always go with the evidence, so the first thing to do is collect some. In a duplicate environment
you run the query without hints.

First look at the execution plan, specifically the one in memory (see Figure 3-9).

Figure 3-9. This execution plan has a glaring problem (highlighted in red no less)

Figure 3-8. The CBO Environment section can often reveal “odd” parameter settings

Luckily SQLT has done all the work for you. Following a SQLT XECUTE you saw that in the current execution
plan, on Execution Step 1, the INDEX RANGE SCAN, the optimizer expected a cardinality of 1. (To see this look at the
Exec Ord column, go down until you find “1”. This is the first line to be executed.)

Then read across until you get to the Estim Card column. Here you’ll see a value of “1”. But as this was a SQLT
XECUTE the SQL was executed, and the actual number of rows returned was greater than a million. The 1 row was
expected, but there were actually 1 million rows. This is a big clue that something is wrong. The question at this point
is “Why does the optimizer think the cardinality is going to be 1”?

Look at the Cost column. You will see that the cost is expected to be 0. The optimizer thinks there is no cost in
retrieving this data.

To continue following the evidence-based trail you have to know the situation with the index statistics.
Take a look at the index. You can expand the button in the Go To column to display more links (see Figure 3-10).

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

49

Figure 3-10. An expansion under the “more” column in an execution plan can show more links to other information

Figure 3-11. Column statistics reveal no rows

Then click on Col Statistics under either the “Index Columns” or “Table Columns” heading to display the Column
Statistics (see Figure 3-11).

Here you can see an interesting situation. The number of rows is 0 for all the columns. This means the table was
empty when the statistics were collected. So, when were the statistics collected on the parent table? For that you need
the parent table name. Click the back button to get to the execution plan again, and this time click on Col Statistics
under the Table Columns section to display the table statistics (see Figure 3-12).

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

50

Figure 3-13. The table details section shows where we can go for modification information

Figure 3-14. The table modifications section shows rows being inserted, deleted, and updated

You will see that 100 percent statistics were collected on TABLE 2, that there were no rows in the table, and that
the collection happened at 04:47 in the morning. This is a fairly typical time for statistics collection to happen.
Now you have to ask where the data came from and if there were 0 rows in the table at 4am. For this, click on the
“Table” hyperlink from the main page to display the table details (see Figure 3-13).

Figure 3-12. Table statistics reveal no rows at the time of statistics collection

This shows a new column of interest, the Table Modif column. Click on the “Modif” hyperlink for TABLE 2 to see
the modification history (see Figure 3-14).

CHAPTER 3 ■ HOW OBJECT STATISTICS CAN MAKE YOUR EXECUTION PLAN WRONG

51

Note ■ I know what you’re thinking. SQLT is the utility that just keeps on giving. I know all this information is in the

database and can be obtained with suitable queries, but SQLT has done that for you already. You don’t have to go back to

the database to find it. SQLT collected it, just in case.

Now you can see the modifications to the tables, with time-stamps. Read across the row for the TABLE 2 entry.
There were zero rows in the table, then roughly 2 million rows were inserted, there were no updates and no deletes,
which resulted in roughly 2 million rows in the table. The statistics became stale because of this (more than a
10 percent change), and this happened at 4:09 pm.

The steps are now clear. The table was empty. Statistics were collected. Two million rows were added, the query
was run, the optimizer estimated a cardinality of 1 (remember it rounds up to 1 if the value would be 0), and hence
calculated that NESTED LOOPS (or even worse CARTESIAN JOINS) would be fine and got it completely wrong.

Now that you know what happened you can fix the problem (if it seems appropriate), in a few different ways:

You could collect statistics at a different time.•

You could export and import statistics as appropriate.•

You could freeze the statistics for when the table is populated.•

There are probably even more ways to do this. The solution is not the issue here. The point is that once you
know what happened you can design a solution that suits your circumstances. You can also see why in this case
the _optimizer_cartesian_enabled=FALSE was needed. It was a possibility that the optimizer may have chosen a
cartesian join because one of the key steps would have a cardinality of 1 (one of the few cases where a CARTESIAN
JOIN makes sense). You can test your theory very simply. With TABLE 2 fully loaded, collect statistics. Then retry the
query, or even better, just check what the execution plan would be.

The optimizer had bad statistics and “decided” to do something that didn’t seem to make sense. SQLT collects
enough information to let you see why the optimizer did what it did, and then you can set up statistics collection
so that the optimizer doesn’t get it wrong. The optimizer is your friend, an awesome piece of code that is nearly
always right, as long as it gets the information it needs.

Summary
In this chapter we saw clearly from practical examples that statistics make a real difference and that just leaving
everything on automatic pilot is not always the best strategy. You need to pay attention to what statistics you are
collecting, the quality of those statistics, and how often you are collecting them. Take special care with column
histograms. SQLT helps you to do this quickly and efficiently and gives you more information than a pile of scripts
ever could. We touched on skewness in this chapter; but in the next chapter we’ll dive right into the detail and look at
what skewness is and how it affects your execution plan.

53

CHAPTER 4

How Skewness Can Make Your
Execution Times Variable

Skewness is one of those topics that for some reason is often ignored, or misunderstood. Skewness is an important
part of data handling for the cost-based optimizer. It makes a difference as to what the optimizer decides to do.
It is so important that Oracle created new features such as Adaptive Cursor Sharing just to handle the
consequences of skewness.

Skewness
In this section we are going to look at what skewness is, how it comes about, and how it affects your execution plan.
If you handle skewness every day, you’re likely to know immediately what kind of situations are likely to produce
skewed data. Sometimes skewed data can arise unexpectedly as well. We’ll also look at how to detect skewness, both
from SQL and from SQLT.

What Is Skewness?
In the simplest terms possible a table is a representation of data and skewness is a property of a data set that results
in an unexpectedly large or unexpectedly low number of matches for a particular column predicate. For example, if
we plotted the amount in dollars spent at a hardware store for June, July and August we might find that the amount
spent varied by only 10 percent. The variability per week would be very low. If we now extend our timeline to include
Thanksgiving and Christmas, we would find that the amount spent peaks around those dates, so the amount could
be twice or three times the “normal,” June–August amount. If we only had June–August to predict the future, we might
expect a much lower level of spending. This unexpectedly large spending around Thanksgiving and Christmas would
give a skewed data set. If we now instead plotted the amount each person spent per visit, in groupings of $10 we would
find another distribution. A few people spend in the $0– $10 range, perhaps more in the $10.01 to $20 range. The
trend would continue up to some peak and then fall off. Most people would spend in some specific range, and then
we would have the “high rollers,” who spend thousands. The graph of the amount spent vs. the number of people who
spent in this range will be skewed. If everybody came to the mall and spent exactly the same amount, then everybody
would fall into the same range. All the other ranges would have a value of zero. This would be highly skewed data set.

This highlights a crucial point that DBAs and developer should constantly be on the alert for. Do you really truly
understand your data. Sometimes it can be hard because the columns are not named in a way that is obvious. This
is where database designers, developers, and DBAs must work together to get good structures, relevant indexes,
and primary and foreign keys. In some databases you’ll find that if sampling is set to automatic, you’ll find column
statistics are collected (sometimes with very small sample sizes) but that do no good because there is no skewness. In
Figure 4-1 we see the information about what statistics were collected for each of the columns in the table TABLE 1.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

54

In the figure for the SQLT report collected, we see, under the “Table Column” section, for the particular table
TABLE 1, that a number of columns have had column statistics collected. Look at the highlighted section for COL1. It
had 100 percent statistics collected. COL4 had 0.1 percent collected. Why is there such a vast difference between the
COL1 and COL4? This is because the automatic sampling algorithm, chose only 5,791 rows for its COL4 sample size.
Let me explain what the optimizer does when it samples these columns.

In this case, for table TABLE 1, for each column COL1, COL2, COL3, COL4, etc., the statistics gathering
algorithm is sampling the values from the table. The sample size is shown in the “Sample Size” column. So if COL1
was the amount spent, then the statistics sampling algorithm would sample the columns and find there was some
distribution of data (as we discussed above). If COL4 was the store name it would sample the data and find there were
a certain number of distinct values (38 in this case). In each case, however, there are 5,144,909 rows of data. It’s not
documented what the algorithm does exactly to decide on the sample size, but it’s pretty clear that if the first sample
was “Joe’s Hardware” and the second sample was “Joe’s Hardware” and the third sample was “Joe’s Hardware” the
statistics-gathering algorithm might begin to “guess” after the one-thousandth sample that all the values it samples
are statistically very close together. If your data is highly skewed and there was only one value in the entire column
population of, say, “Sally’s Hardware” inserted in COL4, then by random sampling the statistics collection algorithm
might miss this value. Suppose further that despite the fact that the “Sally’s Hardware” value is very rare, it is the value
used in the predicate used for this query. In Oracle 10g, you might well end up with a sub-optimal plan depending on
the first value used for the predicate. In 11g you would have Adaptive Cursor Sharing to help you (we discuss this more
in Chapter 7). If on the other hand, however, you knew that your data was highly skewed in this way, and you saw that
your auto sample size was tiny, you might very well decide that choosing a larger sample size might be a good idea.

Figure 4-1. Table column statistics showing the sample size and number of distinct values

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

55

How to Tell If Data Is Skewed
Skewness is so important that as a DBA or developer you should be on the alert for columns that might contain
skewed data. When data sets are as large as they are today, it is very difficult to immediately tell if a data set is skewed.
SQLTXPLAIN makes the job much easier for you by showing the statistics for the histograms, if there are any. So how
do you find out if data is skewed? There’s more than one way of seeing the collected data, but all methods rely on
sampling. The simplest way to sample is with a query (as shown below). In this simple example we create a test table
test3 with a CTAS (Create Table As Select) statement from a known (at least to me) skewed data set. The object_type
column of the dba_objects view. The dba_objects view lists attributes of the objects in the database, including
the object type. There are many different object types: for example, table (this is a very common object type) and
dimension (this is a very rare object type). Once we’ve created a test table called test3, which will contain 73,583
rows, we can sample the number of each type of object: this will give us an idea of the data set’s skewness.

SQL> create table test3 (object_type) as select object_type from dba_objects;
Table created.
SQL> select object_type, count(object_type)
 from test3 group by object_type order by count(object_type);

OBJECT_TYPE COUNT(OBJECT_TYPE)
------------------- ------------------
RULE 1
DATABASE LINK 1
LOB PARTITION 1
EDITION 1
DESTINATION 2
JAVA SOURCE 2
SCHEDULE 3
MATERIALIZED VIEW 3
SCHEDULER GROUP 4
DIMENSION 5
CONTEXT 7
UNDEFINED 9
INDEXTYPE 9
WINDOW 9
CLUSTER 10
RESOURCE PLAN 10
JOB CLASS 13
JOB 14
EVALUATION CONTEXT 14
DIRECTORY 14
PROGRAM 19
RULE SET 23
CONSUMER GROUP 25
QUEUE 39
XML SCHEMA 52
OPERATOR 55
PROCEDURE 159
LIBRARY 183
TYPE BODY 241
SEQUENCE 242
TABLE PARTITION 258
FUNCTION 304

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

56

JAVA DATA 328
INDEX PARTITION 420
TRIGGER 620
JAVA RESOURCE 834
LOB 995
PACKAGE BODY 1269
PACKAGE 1329
TYPE 2827
TABLE 3113
INDEX 4134
VIEW 5263
JAVA CLASS 22917
SYNONYM 27802

The example above shows the object type in the database vs. the number of those object types. Here the “bucket”
is the object_type value (“bucket” has come to mean the range of values covered in a data set). So, for example, the
object type of SYNONYM (bottom line in the example) has 27,802 values. Sometimes buckets are days of the week such
as Saturday or Sunday, sometimes primary colors such as red or blue, and sometimes buckets are ranges such as
“dates in 2011”. In each case these are the values you plot on your X-axis if you were plotting a graph. From here on in,
we will use the term “bucket” to represent the range of values in question.

Once you have issued the query you will see information that will help you decide how skewed the data is.
Please note, however, that almost all data is skewed to some extent. The data will be skewed even in our example in
the previous section regarding the spending of money in a superstore. The question you need to answer is this: is it
skewed enough to cause a problem with my queries? A 10 percent variability doesn’t usually cause a problem, but
if you have one bucket with 90 percent of the samples, then the data is highly skewed. So decisions on skewness are
somewhat subjective. In the example query above if I am querying my table test3 and my predicate value is SYNONYM,
then I am likely to get many more rows returned than if I issued my query against the value “RESOURCE PLAN”. See the
example code below. If we sample our test table for the rare value we only get 10 values.

SQL> select count(*) from test3 where object_type='SYNONYM';

 COUNT(*)

 27802

SQL> select count(*) from test3 where object_type='RESOURCE PLAN';

 COUNT(*)

 10

Do we care about this skewness, and is this data skewed a lot? Technically speaking even the slightest deviation
from the “norm” can be classed as skewness, but the term has come to mean an amount of skewness that makes my
execution plan unstable. From a more objective point of view, however, if you see as in the example above that some
predicates return more than 10 times the values of other predicates, then this is very skewed. If you see a ratio of the
most common to the least common value of 1.5 or higher, you can start to consider skewness as a factor.

SQLT makes the job of collecting queries like this much easier. It shows the distribution of data for a column
histogram. First from the top of the report, (see Figure 4-2) we can click on “Tables”, “Columns”, or we could click on
“Histograms”. In this example we’ll click on “Tables” since that’s the route you’ll most likely follow in an investigation.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

57

The “Tables” page shows us the screen in Figure 4-3.

Figure 4-2. The top of the SQLXECUTE report

Figure 4-3. The tables section of the report

From Figure 4-3, which shows only the left hand side of the screen, we can now click on the “Cols” hyperlink for
any individual table to see the column details. In this case we are looking at TABLE 1 so we click on the corresponding
link. This gets us to the screen shown in Figure 4-4 (which is the right hand side of the screen), where I have
highlighted the “FREQUENCY” hyperlink, which takes us to the histogram for COL2 of TABLE 1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

58

We arrived at the screen shown in Figure 4-5, by clicking on the “FREQUENCY” histogram for column COL2. The
two types of histograms, “FREQUENCY” and “HEIGHT BALANCED” will be discussed in a later section, but suffice to
say that they are both ways of representing bucket frequencies.

Figure 4-4. The hyperlink for the histogram for COL2

Figure 4-5. A sample histogram from SQLT

This figure shows us that for a value of “1” the estimated cardinality is approximately 1.9 million, while the value
for “17” is approximately 4000. Is this data skewed? It sure is. In Figure 4-5 the estimated cardinality popularity have
been ordered, but this is not always the case. Look at Figure 4-6 from our example test3 table.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

59

In this example histogram, we see the basic facts shown on the column display; the number of buckets (33), the
number of rows in the table, the number of nulls, and the sample size. In this case the sample size is extremely small.

This data looks highly skewed. For the “Endpoint Actual Value” of “DIMENSION” the estimated selectivity is
0.000182. For JAVA_CLASS the selectivity is 0.313704. This means that since there were 0 null values nearly a third of
the table will be returned if a predicate against object_type uses the value “JAVA CLASS”. If the predicate used the
value “JAVA RESOURCE” then the selectivity is only 0.011996 or a cardinality of 883, compared to the value of 23,083
values for “JAVA CLASS”. Even with this highly skewed data, you could ask yourself: “Is this skewness relevant for my
query?” If the column object_type is not involved in your query, then the skewness does not matter to you.

How Skewness Affects the Execution Plan
Now that we know what skewness is and how statistics are shown in a SQLT report for a particular SQL statement, we
should look at how skewness can cause problems with an execution plan.

Suppose we wanted to know the sum of all the financial transactions we had carried out in the previous month
with each financial institution we had done business with. We might well have the name of the institution in the
description field, possibly a company_ID to represent the company and a field to represent the amount of the financial
transaction. We would probably have lots of other fields as well of course, but these are the ones we would be

Figure 4-6. Another example histogram table for our test3 example. SYNONYMs are popular

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

60

interested with regard to skewness. We could query this table to find the sum of all the records where the company_ID
matched the company that we were currently looking for. If we chose a company we had not done much business
with we might only get a few records. The optimizer might well be expecting only one record for some companies and
so might choose to do a Cartesian join. If the company was Bank of America, however, we might expect thousands
(perhaps millions) of transactions. In this case a hash join might be a better choice. The “good” plan for these two
extreme cases are very different.

If the Cartesian join is used with the Bank of America records, there would be a disastrous drop in performance
as Oracle tried to do a Cartesian join on thousands of records. Even Exadata can’t cope with errors like this. So
depending on the predicate value, we could well need different execution plans. To fix these kinds of problems, we
need to consider what the options are: removing the histogram, improving the histogram, using Adaptive Cursor
Sharing, or changing the query. There is no hard and fast rule here for what to do in these circumstances. SQLT
will show what is happening and how skewness is affecting the execution plan; then you, in conjunction with the
developers, can decide which is the best strategy for your situation: which indexes to add or remove and which
histograms are helpful to collect.

Histograms
Histograms are a confusing topic, unless you know what they are. The confusing and sometimes contradictory
terminology used by different documents does not help. So let me start by defining a bucket. A bucket is a range
of values for a particular column. So, for example, if we had a column TRUE_OR_FALSE and it could only have
two values (TRUE or FALSE) then we could have up to two buckets: each bucket would have a value describing
the number of values that were TRUE and the number that were FALSE. A histogram is a data representation that
describes the relative population of different ranges of data value.

Histogram Types
We’ve talked about histograms in general terms, but Oracle currently has a bucket limit of 254 for any type of
histogram. This means it cannot store the frequency of more than 254 types of value for a column. As you can imagine
this is a very small number when compared to almost any range of possible values of anything! “Colors of paint”,
“Names of Banks”, “Zip Codes”: most histograms will need more than 254 buckets. If the number of distinct values
(shown as NDV in SQLT reports) is greater than 254 and the statistics gathering process detects this, then you will have
to somehow squeeze the data distribution into fewer buckets than there are distinct values. If this happens, you are
exposing the optimizer to the risk of incomplete information that may adversely affect your execution plan. Look back
at Figure 4-6. You’ll see that there were 33 buckets from the sample of 5,502 rows. When in fact we know there are 45
distinct values. Look at the result of this query, which reads all the data from the table.

SQL>select count(distinct object_type) from test3;

COUNT(DISTINCTOBJECT_TYPE)

 45

The true answer to the number of distinct values is 45. The statistically sampled answer was 33. The statistics
sampler, even with a sample of 5,502, just wasn’t lucky enough to find all the different possible values of object_type.
Still, it produced a frequency type histogram, because it did not exceed its 254 limit. The point is that despite being a
frequency-type histogram not all the values were represented. What happens if we artificially squeeze the number of
buckets down to 10?

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

61

SQL>exec dbms_stats.set_table_prefs(
 ownname=>'STELIOS',
 tabname=>'TEST3',
 pname=>'method_opt',
 pvalue=>'for all columns size 10');

PL/SQL procedure successfully completed.

Now we have the other type of histogram (of the two possible types), the height based histogram (see Figure 4-7).

In the height-based histogram, value types are counted against the buckets and are marked as popular or not
popular. If they are not popular, then one bucket is allocated. For example, see bucket number 1, as it represents the
values for object types named lower in the alphabet than “CONSUM”: for example, “CLUSTER” and “CONSUMER
GROUP”. Because there could be numerous values for one bucket, some of which we might not come across, the
end point is estimated. We know there is no object type of “SYNONY1”, but it’s the label for buckets 5, 6, 7, and 8. As
you can see, with only 10 buckets the estimate of the distribution of data for object type (which in fact has 45 distinct
types) is very poor. With a histogram of this poor quality we might well end up with some poor plans. It is therefore
important that we know when to have histograms and when they are a hindrance.

When to Use Histograms
If you use the default values for optimizer statistics collection then you will most likely have some histograms on
columns that you aren’t aware of. If you have a query with poor performance, or one you want to tune, you may
want to examine what has been collected to make sure it makes sense. There are a few guidelines to consider when
deciding if you want a histogram on a column or not. Histograms were designed to take care of skewed data, so
if your data is not very skewed then it follows that histograms are not useful. An example might be a date-stamp
against a table record. If the database activity happens every day and we have 100 transactions every day each with a
timestamp, a histogram on the date column is not going to help. In FREQUENCY histograms this would be equivalent
to the height of all buckets being the same. If there is no skewness then histograms do not help us. It just means we
spend time overnight gathering statistics that we don’t need. As I’ve mentioned before the auto sample size is very
clever about when to quit sampling if the data is hardly skewed, so you probably will not lose much time in this way.

If you have very skewed data, then histograms may be very important for you; but if you do have them, you
should check with SQLT that the histograms are appropriate and correct. In Figure 4-8, we see the column statistics
for TABLE 1.

Figure 4-7. A height-balanced histogram with 10 buckets

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

62

Apart from the very low percentage sample rates (0.3 percent) for many columns we also have some bucket
counts that do not match the number of distinct values. The last entry shows 76 distinct values but only 75 buckets.
This means there is one value that is not even represented in the sample size of 17.5 percent. In a case such as this,
you would have to look at the histogram (a FREQUENCY histogram in this case) and determine if the histogram was
useful. If it isn’t because you judge the data is not skewed, then you can remove the histogram and change the table
preferences to not collect statistics on this column. If you find that the data is indeed skewed then you need to collect
better statistics. This will mean collecting a larger sample size for this column. You could do this by setting table
preferences or by running specific jobs to collect data after the main statistics job.

How to Add and Remove Histograms
If you want to remove a column’s histogram you can simply use the dbms_stats procedure as shown in the
example below

SQL> exec dbms_stats.delete_column_stats(
 ownname=>'STELIOS',
 tabname=>'TEST3',
 colname=>'OBJECT_TYPE',col_stat_type=>'HISTOGRAM');
PL/SQL procedure successfully completed.

However, this does not remove the statistics permanently. The next time the statistics job comes across the table,
it may decide that the same column needs column statistics again. You would remove statistics from a column on a
one-time basis if you were testing the execution of a query. Removing the column statistics might then allow you to
re-parse a statement and see if the execution plan is materially affected by the change. If you wanted to remove the
column statistics collection forever then you could set the table preferences, as in the example below, by setting the
method_opt value to “FOR ALL COLUMNS SIZE 1”, which means no column histograms.

SQL> exec dbms_stats.set_table_prefs(
 ownname=>'STELIOS',
 tabname=>'TEST3',

Figure 4-8. A section from some column statistics

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

63

 pname=>'method_opt',
 pvalue=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

If the table has other columns you need statistics for, you may decide that you want to set the preferences so that
only one column in particular is ignored for column statistics. This is the command example show in the following
example.

SQL> exec dbms_stats.set_table_prefs(
 ownname=>'STELIOS',
 tabname=>'TEST3',
 pname=>'method_opt',
 pvalue=>'FOR COLUMNS OBJECT_TYPE SIZE 1');

PL/SQL procedure successfully completed.

If on the other hand you want to add column statistics you can gather them manually with a
dbms_stats.get_column_stats command.

Bind Variables
Bind variables are one of those mysteries that a new Oracle DBA might not immediately be aware of. Developers,
on the other hand, will use bind variables all the time and be comfortable with the definitions and the meanings. If
you are familiar with the concept of a variable and its value, then there is nothing more to understand from a bind
variable. It’s just Oracle’s version of a variable. A variable (and bind variable) is just a symbolic name for a value that
can change depending on the needs of the code. Bind peeking and bind capture, however, are ideas that are more
specific to Oracle and are techniques allowing the optimizer to make better decisions when skewness is present. Bind
variables, skewness, and bind peeking all work with CURSOR_SHARING to improve the CBO plan. We cover all these
concepts and how they work for you, in the following sections.

What Are Bind Variables?
Now that we have entered the world of histograms and have looked at skewness, we see that the value used as the
value for the predicate could have a material effect on the number of rows returned. In the example below we see that
depending on whether we select “EDITION” or “TABLE” we get a different count.

SQL> select count(*) from test3 where object_type='EDITION';
 COUNT(*)

 1
SQL> select count(*) from test3 where object_type='TABLE';
 COUNT(*)

 3113

If we wanted to avoid literal values in our SQL, which would all be parsed separately (and would have an adverse
effect on performance), we might have introduced bind variables. Bind variables are a way to pass parameters to
routines by setting the values of the parameters. Below I show a simple procedure to count the number of different
object types in TEST3, using a bind variable called b1.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

64

SQL> set serveroutput on;
SQL> create or replace procedure object_count(b1 in char)
 2 as
 3 object_count number;
 4 begin
 5 select count(*) into object_count from test3 where object_type=b1;
 6 dbms_output.put_line(b1||' = '||object_count);
 7 end;
 8 /

Procedure created.

If we ran this procedure a few times we could see that different values are being passed in and being used.

SQL> exec object_count('EDITION');
EDITION = 1

PL/SQL procedure successfully completed.

SQL> exec object_count('TABLE');
TABLE = 3113

PL/SQL procedure successfully completed.

In the example above, b1 is taking the value “EDITION” and then the value “TABLE”. The text in the procedure
that actually does the work is a simple select statement. Its predicate is object_type=b1. The text of the query did not
change as far as the optimizer is concerned.

What Are Bind Peeking and Bind Capture?
By using bind variables we are hiding the actual value of the bind variable from the optimizer. We did this for a good
reason. We want to avoid excessive parsing of every SQL with a different predicate value. That’s a good strategy when
the data is not skewed and your execution plan is not likely to change depending on the value passed in as the bind
variable. With skewed data, the optimizer could benefit from knowing the value of the bind variable being passed to
the SQL. This process is called “bind peeking” and is done during hard parsing. Bind capture, on the other hand, is a
snapshot of the value of actual bind variables being used during execution of the SQL. The values used for the bind,
in this case b1, are collected and available to SQLT. In the example below (Figure 4-9) we see the section in the SQLT
report showing the values of the captured binds.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

65

In cases where skewness is important and you suspect that the values of the binds are sending the optimizer
down the wrong path, you may want to look at the section “Captured Binds.” In conjunction with the captured binds
and the time stamps (and any reports of poor performance) you can track down why a particular statement decided to
do the wrong thing.

Cursor_Sharing and Its Values
The CURSOR_SHARING parameter was introduced by Oracle to address the issues caused by code, which did not use
bind variables as described above. When bind variables are not used, the SQL text has to be parsed by the optimizer.
This is a costly operation, and it’s probably a waste of time if the only thing that’s changed is the value of a literal.

CURSOR_SHARING has three possible values: EXACT, FORCE, and SIMILAR. EXACT is the default and tells the
optimizer to consider each SQL text as it comes across it. If your application is well written and uses binds and literals
as seems most efficient, then leaving EXACT alone is the best choice.

CURSOR_SHARING set to FORCE tells the optimizer to use binds for all the predicates (and it will make its own
names). This is a value you would use if you had a badly written application and you wanted to take advantage of the
performance gains from using bind variables, without modifying your application to use bind variables.

CURSOR_SHARING set to SIMILAR is deprecated as of 11g and should not be used, but it’s probably worth
mentioning that it was an “intelligent” version of CURSOR_SHARING=FORCE. It created system-defined bind
variables in most cases unless the bind variable affected the optimization in some way. It was not a complete solution,
and the introduction of Adaptive Cursor Sharing is a big improvement on CURSOR_SHARING=SIMILAR. The value
of the parameter CURSOR_SHARING is important to note so that you understand if the bind variables are in play. You
will also see in the SQL text section of the SQL report that if literals have been replaced by bind variables they will have
system-defined names.

Figure 4-9. Example output of captured binds

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

66

The Case of the Variable Execution Time
Sometimes it is better to have a slightly longer stable execution time than a slightly faster unstable plan. Unstable
execution times (where the execution time can vary widely) cause problems with scheduling of batch jobs. In the
example case here the execution times have never been stable. You’re in a pre-production environment and you want
to get some information on what can be done to improve the stability of the execution time. You have a luxury in that
you have a test environment with representative queries and data. So after the test you look at the AWR reports and
decide that one particular query needs attention, because sometimes it takes a long time. We get the SQL_ID and
generate the SQLT. We want to know what’s happening with the execution plans, so we look in the “Execution Plans”
section as shown in Figure 4-10.

Figure 4-10. Shows many different execution plans

In the “Execution Plans” section we see that there are many different execution plans. Why would we have so
many different execution plans? Let’s look at the worst execution plan first, as shown in Figure 4-11 (the left side of the
screen) and Figure 4-12 (on the right side). We see many Nested Loop steps in Figure 4-11 and many under estimates
in Figure 4-12.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

67

Figure 4-11. The worst execution plan as selected by clicking on the “W” from the list of execution plans in Figure 4-10

Figure 4-12. The numbers highlighted with *** show very big under estimates by the optimizer

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

68

Since we have actual rows returned, we can look at the over and under estimates. We have quite a few of them,
so something is not right. Possibly more than one thing is not right. Since the first step, Line 11, is already “wrong,” by
a factor of 4,230, we should start there. Look at Figure 4-13, as it shows the column statistics for TABLE 1. Do you see
anything of interest? (The actual table has more information than is shown in the figure. I have removed some table
columns for readability.)

Figure 4-13. Column statistics for Table 1

Let’s look at the ID column’s statistics. The sample size is good at 100 percent, and there are 34,916 distinct
values: so that’s more values than we can fit into our 254 buckets. So if we had a histogram it would be a HEIGHT
BALANCED one, but under the “Histograms” column we see “NONE”. So what about ORG_ID? Only a 2.4 percent
sample with only one distinct value, and high and low values of “ABC”. Also we have a FREQUENCY histogram with
only one bucket. Not surprisingly the selectivity will be 1.0, but equally this histogram can’t be doing anything for us,
as it’s pointless. On the other hand, it can’t be contributing to a variable execution plan. So let’s look at Column ID2,
where we have a 2.4 percent sample with 397 distinct values and a height balanced histogram. If we looked at the
histogram in detail we’d see there were lots of popular values, but let’s keep going. The DATE column has a HEIGHT
BALANCED histogram: does that make any sense? It depends on what the DATE column represents. But usually
DATE columns with histograms should be viewed with suspicion. ID3, also 2.4 percent, has two distinct values, “Y”
and “N”. If we look at the histogram we’d see that “N” has a selectivity of 0.03 and “Y” has a selectivity of 0.97. This
alone could affect the rows returned. It’s looking like there is some skewed data for sure. But let’s keep looking. Next
we have ID4 with 51 distinct values and 49 buckets, so things don’t look quite so good now. The histogram for that
shows selectivities between 0.005 and 0.1. That’s a factor of 20: which means that’s another skewed column, plus
the bucket count is wrong. ID5 doesn’t have a histogram and ID6 has a wrong bucket count: again it’s skewed. You
would spend time looking at every column in a report like this because sometimes the real culprit is the last thing
you look at; but in this example, we have poor sampling for histograms, inappropriate histograms, and probably
missing histograms.

CHAPTER 4 ■ HOW SKEWNESS CAN MAKE YOUR EXECUTION TIMES VARIABLE

69

In a case like this you would do your best to set up the right histograms, eliminating them where they are not
needed and adding them where they are.

Summary
Skewness is one of the most difficult concepts to understand and one of the most troublesome to deal with in SQL.
Many attempts have been made through iterations of the Oracle software to deal with the problem, some attempts
were more successful than others, but Adaptive Cursor Sharing is the most successful to date. Throughout the twists
and turns that can result from unstable execution plans, SQLTXPLAIN is there with the information to get your plan
stable and the right statistics collected. In the next chapter we will look at query transformation that the optimizer
does during parsing to get your execution plan to execute quickly.

71

CHAPTER 5

Troubleshooting Query
Transformations

The Oracle query optimizer is an amazing piece of code, developed and improved over the years (with perhaps a few
blind alleys along the way) to generate execution plans that are both easy to generate and that run fast. The optimizer
uses a number of “tricks” along the way to improve the speed of execution and implements the execution plan in
a way that gives the same results as your unmodified SQL. These “tricks” (or heuristics) sometimes include query
transformations.

Query transformations, as the name implies, change the SQL query from its original text into something different:
but it still gives the same result. This is a little bit like saying you want to go from London to New York, and you have
decided to go via Orlando, have a nice rest, visit Disneyworld, soak up the sun and then drive up the East Coast. A
query transformation would optimize your journey by using heuristics. One of the heuristics might be: “If there is a
direct flight from your starting point to your destination, then avoid using stopovers in other locations”. Or perhaps
you could rewrite the rule and use “minimize the number of stop over points in your journey”. I’m sure you can see
this could get pretty complicated, even for my simple example. What if you really wanted to see Mickey Mouse? Then
the plan would be more difficult to change. Sometimes even the simplest Mickey Mouse queries can cause problems
when you’re trying to make the journey quickly and efficiently.

What Are Query Transformations?
To explain what is meant by “query transformation,” from the point of view of an SQL query, let’s look at a simple
example. Ask yourself a question. Is this query something that can be simplified?

SQL> select * from (select * from sales); -- Query 1

This query “obviously” simplifies to

SQL> select * from sales; -- Query 2

That’s about the simplest example of a query transformation. Query 1 was transformed into query 2. There is no
danger with this query transformation that the results will be different between version 1 and version 2 of the query.
This particular transformation is called “sub-query unnesting.” Each transformation has its name and its set of rules
to follow to ensure that the end results are correct as well as optimized. Does the cost-based optimizer recognize this
fact? Let’s ask the optimizer to calculate a plan for a very simple query; but we’ll use a hint that tells it to not use any
query transformations. Here is the SQL and the execution plan.

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

72

SQL> select /*+ no_query_transformation */ * from (select * from sales);
Execution Plan
--
Plan hash value: 2635429107

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		918K	76M	503 (5)	00:00:07		
1	PARTITION RANGE ALL		918K	76M	503 (5)	00:00:07	1	28
2	VIEW		918K	76M	503 (5)	00:00:07		
3	TABLE ACCESS FULL	SALES	918K	25M	503 (5)	00:00:07	1	28

We see from this example that the optimizer chose to access SALES with a full table scan. This is required because
of the select * from sales inside the round brackets. Then the optimizer chose to create a view on that data and
select all of the partitions to create the selected data. So the optimizer collected all the data inside the bracket then
presented the data to the next select. Now, however, let’s give the optimizer a chance to show us how clever it is. Now
we run the query but without our hint. Now the optimizer can use query optimizations.

SQL> select * from (select * from sales);
Execution Plan
--
Plan hash value: 1550251865

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		918K	25M	503 (5)	00:00:07		
1	PARTITION RANGE ALL		918K	25M	503 (5)	00:00:07	1	28
2	TABLE ACCESS FULL	SALES	918K	25M	503 (5)	00:00:07	1	28
--

Now we see that the optimizer has chosen a simpler plan. The VIEW step has been eliminated and is in fact now
the same execution plan as the select statement with no sub-query:

SQL> select * from sales;

Execution Plan
--
Plan hash value: 1550251865

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		918K	25M	503 (5)	00:00:07		
1	PARTITION RANGE ALL		918K	25M	503 (5)	00:00:07	1	28
2	TABLE ACCESS FULL	SALES	918K	25M	503 (5)	00:00:07	1	28

Just to prove the point that query transformations are doing something, I show an example below that nests the
select statements, and we see from the execution plan that the optimizer has added a view for every layer. This is
because I have told the optimizer to not use any query transformations with the hint /*+ no_query_transformation */.

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

73

SQL> select /*+ no_query_transformation */ * from (select * from (select * from (
select * from sales)));
Execution Plan
--
Plan hash value: 1018107371
--
| Id |Operation |Name |Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		918K	76M	503 (5)	00:00:07		
1	PARTITION RANGE ALL		918K	76M	503 (5)	00:00:07	1	28
2	VIEW		918K	76M	503 (5)	00:00:07		
3	VIEW		918K	76M	503 (5)	00:00:07		
4	VIEW		918K	76M	503 (5)	00:00:07		
5	TABLE ACCESS FULL	SALES	918K	25M	503 (5)	00:00:07	1	28
--

If we go back to the original question at the beginning of this chapter “Can this query be simplified?”, we see that
in this simple case the answer is “yes.” This partially answers the question: “Why do we simplify queries?” The answer
to this question is that the cost-based optimizer knows some rules it can use to save the execution engine from doing
some work. The example given is very simple and for illustrative purposes only, but it does explain why we need to do
query transformation.

The next question you might ask is “if the CBO knows all these rules to simplify my query, why do I need to know
about it and what has this got to do with SQLT?” Let me answer the second question first.

SQLT, as a matter of routine, produces many different files that are useful. The main one is the HTML file we’ve
looked at so far, but there are also trace files. One of the trace files is a “10053” trace file, which I’ll explain in the next
section. The answer to the first question is simply that when things go wrong with the CBO we sometimes need to look at
the 10053 trace file to get more detailed information on what decisions the optimizer made during parsing. You can then
check these steps against what you consider sensible and decide if the optimizer is making a mistake or has insufficient
statistics or some other input is influencing the optimizer in some way which is producing poorly performing SQL.

The 10053 Trace File
The 10053 trace file is the result of a request to trace an SQL statement. More properly, it is a request to trace the steps
the optimizer makes to produce the execution plan. The contents are verbose and cryptic but extremely useful if you
want to understand what is happening with query transformation.

How Do I Get a 10053 Trace File?
SQLTXPLAIN generates the 10053 trace file automatically and places it in the main reports directory. It has 10053 in
the name so it’s pretty easy to spot. This is an example file name from the SQLT reports directory:

sqlt_s89909_10046_10053_execute.trc

If you want to collect 10053 manually (i.e., without using SQLTXPLAIN) then these are the commands:

SQL> ALTER SESSION SET MAX_DUMP_FILE_SIZE = UNLIMITED;
SQL> ALTER SESSION SET TRACEFILE_IDENTIFIER = 'MY_10053_TRACE';
SQL> ALTER SESSION SET EVENTS '10053 TRACE NAME CONTEXT FOREVER, LEVEL 1';
SQL> select sysdate from dual;
SQL> exit

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

74

In my case this produces a trace file (with a file extenstion of trc) in the F:\app\Stelios\diag\rdbms\snc1\
snc1\trace directory on my PC. The file is called snc1_ora_2872_MY_10053_TRACE.trc. The location is dependent
on your operating system and system parameters. This is why it’s useful to set the tracefile_identifier parameter,
which allows you an easy way to spot your file among all the others. Notice how in my case the instance name (snc1)
and ora are placed at the beginning of the name, then the tracefile_identifier value is used, and finally the
standard extension makes the full file name. We also set max_dump_file_size=unlimited so that the file is not
truncated just as we reach the interesting part.

What’s in a 10053 Trace File?
I remember when I first looked inside a 10053 (many years ago now) thinking, What is all this gibberish, and how can
I possibly understand it? None of this is documented, and there are many, many short codes for information that are not
explained anywhere. It’s not as bad as it sounds though: the 10053 trace file is, simply put, a log of what the cost-based
optimizer “thought” as it parsed the query in question. It is literally a log of every step considered by the optimizer. It is not
often considered a user facing file, so although it is purely text, it is pretty difficult to understand and pretty verbose. After
all, the file is written to allow debugging of the optimization process and so has to include everything the optimizer does
in great detail. The file was created so that support can fix problems that are discovered in the optimizer. No one to my
knowledge has attempted to make the file user friendly. An example section from a 10053 trace file is shown in Figure 5-1.

Figure 5-1. A section of an example 10053 trace file

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

75

Despite the text in a 10053 trace file being difficult to understand, we can see snippets of information that begin
to make sense. For example, we’ve mentioned that NL is short for “nested loop” and that is a kind of join. We see that
USER$ is having its Access path analyzed. USER$ was one of the tables involved in this query. We also see references
to Cost (we’ve discussed those in Chapters 1 and 2), and we see references to different types of access. For example,
index (FFS) – which is short for Index Fast Full Scan. This is the approach to take with a 10053 trace file. Do not
try and understand every line of it. You will not be able to because some lines cannot be decoded unless you are a
developer working for Oracle. There are a number of different ways to get 10053 trace file information. The simplest
way is to use SQLT XTRACT (as described in Chapter 1). This will generate a 10053 trace file and include it in the ZIP
file. Sometimes, however, you do not want all the information that SQLT gives you and maybe you are only after the
10053 trace file, in which case you could use the DBMS_SQLDIAG package as long as you have the SQL ID of the SQL
statement you are interested in.

Another advantage DBMS_SQLDIAG has is that you don’t need to execute the statement. As long as you have the
SQL ID you can get the 10053 trace. This feature is only available from 11g Release 2, however. The steps are as follows:

1. First we find the sql_id, by knowing the text in the SQL we can search v$sql.

2. Then we can use the dbms_sqldiag.dump_trace routine to get the 10053 trace file.
This puts the trace file in the user_dump_dest location, where we can review it with any
text editor.

Let’s see those steps in action:

SQL> column sql_text format a30
SQL> select sysdate from dual;
SYSDATE

05-OCT-12

SQL> select sql_id from v$sql where sql_text like 'select sysdate from dual%';

SQL_ID

7h35uxf5uhmm1

SQL> execute dbms_sqldiag.dump_trace(p_sql_id=>'7h35uxf5uhmm1',
 p_child_number=>0,
 p_component=>'Compiler',p_file_id=>'DIAG');

PL/SQL procedure successfully completed.

SQL> show parameter user_dump_Dest

NAME TYPE VALUE
--------------------- -------------------------------- -------
user_dump_dest string f:\app\stelios\diag\rdbms\snc1\snc1\trace

SQL> host dir f:\app\stelios\diag\rdbms\snc1\snc1\trace*DIAG*.trc
 Volume in drive F is My Passport
 Volume Serial Number is 1E65-69CC

 Directory of f:\app\stelios\diag\rdbms\snc1\snc1\trace

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

76

09/15/2012 12:41 PM 1,096 snc1_diag_2548.trc
10/05/2012 12:54 PM 68,133 snc1_ora_4980_DIAG.trc
 2 File(s) 69,229 bytes
 0 Dir(s) 788,285,857,792 bytes free

SQL> host notepad f:\app\stelios\diag\rdbms\snc1\snc1\trace\snc1_ora_4980_DIAG.trc

This method, which is part of the event infrastructure, has the added advantage that it can capture trace for
an SQL statement inside a PL/SQL block. An example of this is shown below. A package specification and body are
created to calculate the area of a circle. Then we identify the SQL ID inside the PL/SQL package and trace only the
matching statement.

SQL> host type area.sql
create or replace package getcircarea as
 function getcircarea(radius number)
 return number;
end getcircarea;
/

create or replace package body getcircarea as
 function getcircarea (radius number) return number
 is area number(8,2);
 begin
 select 3.142*radius*radius into area from dual;
 return area;
 end;
 end getcircarea;
/

set serveroutput on size 100000;

declare
 area number(8,2);
 begin
 area:= getcircarea.getcircarea(10);
 dbms_output.put_line('Area is '||area);
 end;
/

SQL> select sql_text, sql_id from v$sqlarea where sql_text like '%3.142%';

SQL_TEXT
--
SQL_ID

SELECT 3.142*:B1 *:B1 FROM DUAL
9rjmrhbjuasav

select sql_text, sql_id from v$sqlarea where sql_text like '%3.142%'
ggux6y542z8mr

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

77

alter session set tracefile_identifier='PLSQL';
alter session set events 'trace[rdbms.SQL_Optimizer.*][sql:9rjmrhbjuasav]';

SQL> @area

Package created.

Package body created.

Area is 314.2

PL/SQL procedure successfully completed.

Session altered.

SQL> host dir f:\app\stelios\diag\rdbms\snc1\snc1\trace*.trc
 Volume in drive F is My Passport
 Volume Serial Number is 1E65-69CC

 Directory of f:\app\stelios\diag\rdbms\snc1\snc1\trace

10/06/2012 09:49 AM 2,593 snc1_dbrm_2404.trc
10/06/2012 09:46 AM 1,175 snc1_j000_4956.trc
10/06/2012 09:46 AM 130,630 snc1_ora_4804_PLSQL.trc
10/06/2012 06:00 AM 973 snc1_vkrm_2948.trc
 4 File(s) 135,371 bytes
 0 Dir(s) 799,840,133,120 bytes free

No more excuses about not being able to get the trace file because the SQL is inside a PL/SQL block. You can
turn off tracing for that SQL ID afterwards with

ALTER SESSION SET EVENTS 'trace[rdbms.SQL_Optimizer.*]off';

The old fashioned way to collect 10053 is alter session, which was mentioned earlier, and which works well
enough. It is also easier to remember and is by far the most popular way to collect trace, as it works with most versions
of Oracle.

ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';

What Is a Query Transformation?
Now that we know how to get a 10053 (and SQLT makes that particularly easy), we need to look at some examples of
queries (and some query transformations) that can be carried out on them. As we said earlier in the chapter, query
transformation is the process the optimizer carries out to change an SQL statement to another SQL statement that is
logically the same (and will give the same result).

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

78

Here is a list of common query transformations and their codes:

Subquery Unnesting: SU•

Complex View Merging: CVM•

Join Predicate Push Down: JPPD•

Luckily if you want a full listing of the abbreviations and their meanings you can look in the 10053 trace file in the
“Legend” section. Look at Figure 5-2 for an example. A section like this is shown in every 10053 trace file, and it shows
all the query transformations that can be used for all SQL statements. This section is not specific to the SQL statement
being examined.

Subquery unnesting, the first query transformation on our list, is formally defined as a query transformation that
converts a subquery into a join in the outer query, which then allows subquery tables to be considered for join order,
access paths and join methods. We’ll look at this example of query optimization because it is a commonly used one;
examples for this are also easy to explain and to generate!

An example query that can use subquery unnesting is:

Select
first_name,
last_name,
hire_Date

Figure 5-2. The Legend section of the 10053 trace file

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

79

from employees
where
hire_date IN (
select hire_date from employees where department_id = 30
);

The subquery part is inside the brackets, and in this subquery example we are using IN.
Let’s see what happens when we trace this query with event 10053, as shown below:

SQL> connect hr/hr
Connected.
SQL> alter session set max_dump_file_size=unlimited;

Session altered.

SQL> alter session set events '10053 trace name context forever, level 1';

Session altered.

SQL> select /*+ hard parse */ first_name, last_name, hire_Date
 2 from employees where hire_date in
 3 (select hire_date from employees where
 4 department_id=30);

FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Den Raphaely 07-DEC-02
Alexander Khoo 18-MAY-03
Shelli Baida 24-DEC-05
Sigal Tobias 24-JUL-05
Guy Himuro 15-NOV-06
Karen Colmenares 10-AUG-07

6 rows selected.

SQL> connect / as sysdba
Connected.
SQL> show parameter user_dump_Dest

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
user_dump_dest string f:\app\stelios\diag\rdbms\snc1
 \snc1\trace

The trace file is located in wherever user_dump_dest points to. If we edit that trace file, we’ll see the header
shown in Figure 5-3.

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

80

We see the usual signature text, telling us about the operating system, the version of Oracle and so on. The
important part for this discussion is to check that the SQL statement we thought we were parsing is found under
the “Current SQL statement for this session” section (at the bottom of Figure 5-3). In our case we put the hint
/*+ hard parse */ in the original SQL, and this has appeared in the 10053 section under the “Current SQL
section”. So we’re pretty sure it’s the right SQL. So how do we know if subquery unnesting is taking place? We
search the 10053 trace file for text similar to that in Figure 5-4. We would search for “subquery unnesting”, but I’ve
highlighted the section relating to subquery unnesting. Notice the “SU” at the beginning of the lines. This tells you
the optimizer is looking at the query with regard to subquery unnesting.

Figure 5-3. The first page of the example 10053 trace file

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

81

We can also see what the new SQL is after it has been transformed. See Figure 5-5 to see what our test query has
been changed into.

Does this query look semantically the same as the original query to you? This was the original query:

Select
first_name,
last_name,
hire_Date
from employees
where
hire_date IN (
select hire_date from employees where department_id = 30
);

and this is the new query:

Select
first_name,
last_name,
hire_date
from employees A, employees B
where
A.hire_date = B.hire_date
and
A.department_id=30;

We see from the above example what subquery unnesting is, from a fairly simple example. The objective of
subquery unnesting is to allow the optimizer to possibly use other joins or table orders to get satisfactory results more
efficiently. In other words, by removing the subquery we give the optimizer more freedom to use other joins because
we’ve moved the table name up a level into the main query. There are many variations on subquery unnesting.

Figure 5-4. The text in the 10053 trace file shows subquery unnesting taking place

Figure 5-5. The final query after transformation

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

82

For example, the subquery could utilize NOT IN or NOT EXISTS. We will not cover all the variations and combinations
of this technique or cover the other query transformations. (You could easily write a whole book on just query
transformations.) Suffice it to say the 10053 trace file will list what it has considered and show what it has done.
The question you should be asking at this point is “Why do I care, what the optimizer is doing ‘under the hood’ if it
works properly?”

Why Would We Want to Disable Query Transformations?
There are situations in which you may want to turn off particular transformations: for example, where an optimizer
bug is causing a problem. This may be because Oracle support has suggested changes or indicated that there is a
problem with a query transformation. You may also see some of the hidden parameters shown below on a system that
you are managing. Here are some cost-based optimizer parameters that can influence the CBO with regard to query
transformation:

• _complex_view_merging

• _convert_set_to_join

• _unnest_subquery

• _optimizer_cost_based_transformation

• _optimizer_extend_jppd_view_types

• _optimizer_filter_pred_pullup

• _optimizer_group_by_placement

• _optimizer_improve_selectivity

• _optimizer_join_elimination_enabled

• _optimizer_join_factorization

• _optimizer_multi_level_push_pred

• _optimizer_native_full_outer_join

• _optimizer_order_by_elimination_enabled

• _optimizer_push_pred_cost_based

• _optimizer_unnest_all_subqueries

• _optimizer_unnest_corr_set_subq

• _optimizer_squ_bottomup

• _optimizer_null_aware_antijoin

• _pred_move_around

• _push_join_predicate

These are some hints that influence this behavior:

• first_rows(n)

• no_query_transformation

• unnest

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

83

• no_unnest

• push_pred

• no_push_pred

• push_subq

• native_full_outer_join

• no_push_subq

• no_set_to_join

• qb_name

This is by no means a complete list of all the hidden parameters influencing the optimizer. These parameters can
be used to turn on and off certain features. For example, “unnest_subquery” has a default value of TRUE (for versions
of Oracle after 9.0) or later. In most situations you would only notice the problems if you were tuning SQL and found
that some hint or some system parameter was not changing the execution plan the way you would expect. In some
situations it is merely a lack of performance (or a sudden change of performance) that is the clue that something may
be wrong. These parameters should only be set if Oracle support asks you to set them. They are generally only set for
a short time to debug certain issues associated with these transformations and bugs associated with them, but there’s
no reason not to open a Service Request with Oracle and ask if you can try something. Support people at Oracle are all
very helpful and accommodating (honest).

Optimizer Parameters
Luckily the 10053 trace file lists optimizer parameters and their default values so that you can tell if there have been
any changes. In the section titled “PARAMETERS USED BY THE OPTIMIZER” (as shown in Figure 5-6, we see the first
few entries of these parameters. Note that “Compilation Environment Dump” and “Bug Fix Control Environment”
are subheadings present in both the altered values and default values section. In our case there are no altered values
for either of these subsections in the altered values section. In the default values section the first actual parameter
shown with a default value is optimizer_mode_hinted (which is set to false). All the parameters are listed (including
the hidden ones). Play with these at your peril, however. If support asks you to change one of these parameters, it is
because they are helping you with some problem related to the optimizer. Also note that any non-default parameters
are shown in a separate section entitled “PARAMETERS WITH ALTERED VALUES”.

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

84

Figure 5-6. The optimizer parameter section of the 10053 trace file

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

85

As an example, let’s see what happens if we change the parameter cursor sharing from its default value of
EXACT to a value of FORCE. Here we set cursor_sharing to FORCE (it was EXACT before). Then we ask for a 10053 trace
and issue a query; then we go to the user_dump_dest and look at the 10053 trace file and find the section with the
parameters. Here are the commands issued:

SQL> show parameter cursor_sharing
NAME TYPE VALUE
------------------------------------ ----------- ---------------------------
cursor_sharing string EXACT
_optimizer_extended_cursor_sharing = none
_optimizer_extended_cursor_sharing_rel = none

SQL> alter system set cursor_sharing=FORCE scope=memory;

System altered.

SQL> alter session set events '10053 trace name context forever, level 1';

Session altered.

SQL> explain plan for select count(*) from dba_objects;

Explained.

And in the figure below (Figure 5-7) we see that cursor_sharing has been changed to force.

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

86

Figure 5-7. Here we see the parameter cursor_sharing has been changed to FORCE

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

87

We see that the 10053 trace file is useful for tracking optimizer parameters both hidden and unhidden. Now we’ll
look at optimizer hints.

Optimizer Hints
If you use any optimizer hints in your SQL, it is a good idea to check that these hints are being used. The optimizer
will do its best to use hints given to it but will not use the hints if there is a problem with such use. Reasons why the
optimizer will ignore hints are incorrect syntax or a conflict in the hint with another hint. If the hints are correct the
optimizer will use them. Let’s look at an example involving the query we were previously working on. Now, armed
with our knowledge of subquery unnesting, we’ll write the query a different way and try a few hints. First we’ll run the
query with no hint and look at the execution plan. It will show a hash join. Then we’ll hint a nested loop join. We’ll
confirm that but look at the execution plan again. Then finally we’ll use conflicting hints and see that the execution
plan reverts to the hash join.

SQL> set autotrace traceonly explain;
set lines 100
select
 a.first_name, a.last_name, a.hire_date
 from employees a, employees b
 where a.hire_date = b.hire_date
 and a.department_id=30
/
Execution Plan
--
Plan hash value: 2254211361

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		7	238	6 (17)	00:00:01
*1	HASH JOIN		7	238	6 (17)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6	156	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	6		1 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	856	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("A"."HIRE_DATE"="B"."HIRE_DATE")
 3 - access("A"."DEPARTMENT_ID"=30)
SQL> select /*+ use_nl(a b) */
 a.first_name, a.last_name, a.hire_date
 from employees a, employees b
 where a.hire_date = b.hire_date
 and a.department_id=30
/
Execution Plan
--
Plan hash value: 3321434377

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

88

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		7	238	12 (0)	00:00:01
1	NESTED LOOPS		7	238	12 (0)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6	156	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	6		1 (0)	00:00:01
* 4	TABLE ACCESS FULL	EMPLOYEES	1	8	2 (0)	00:00:01
--

Predicate Information (identified by operation id):

 3 - access("A"."DEPARTMENT_ID"=30)
 4 - filter("A"."HIRE_DATE"="B"."HIRE_DATE")

SQL> select /*+ use_nl(a b) use_merge(a b) */
 a.first_name, a.last_name, a.hire_date
 from employees a, employees b
 where a.hire_date = b.hire_date
 and a.department_id=30
/

Execution Plan
--
Plan hash value: 2254211361

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		7	238	6 (17)	00:00:01
* 1	HASH JOIN		7	238	6 (17)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6	156	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	6		1 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	856	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("A"."HIRE_DATE"="B"."HIRE_DATE")
 3 - access("A"."DEPARTMENT_ID"=30)

Let’s look at each step and see if we can understand what happened. In the first execution we allowed the
optimizer to do its own thing. We could also confirm this by looking at the 10053 trace if we wanted to make sure there
was no influence on the optimizer from hidden parameters. So in the first step the optimizer went with a hash join. In
the second execution, we decide (for whatever reason) we’d like to try a nested loop instead, so we use a hint in the
SQL use_nl (a b). Remember that (a b) represents the aliases of the two tables that are being joined in this hint.
Gratifyingly the new execution plan uses a nested loop. So far so good.

Now, in the third execution, we want to refine things a little further and use an additional hint, use_merge(a b).
This seems somewhat contradictory, but we want to know what the optimizer will do. Will it use a hash join, will it use
a sort merge join, or will it pick the best option from both of these? If we look at the resulting execution plan we see

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

89

that it does neither of these things. Instead it uses a hash join. So rather than guessing we now generate a 10053 trace
file of the “errant” behavior. In these steps we set the dump file size to unlimited ask for a 10053 trace file run the SQL
with the two hints, that we want to investigate and then run the SQL.

SQL> alter session set max_dump_file_size=unlimited;

Session altered.

SQL> alter session set events '10053 trace name context forever, level 1';

Session altered.

SQL> set autotrace off;
SQL> select /*+ use_nl(a b) user_merge (a b) */
 2 a.first_name, a.last_name, a.hire_date
 3 from employees a, employees b
 4 where a.hire_date=b.hire_date
 5 and a.department_id=30
 6 /

FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Den Raphaely 07-DEC-02
Alexander Khoo 18-MAY-03
Shelli Baida 24-DEC-05
Sigal Tobias 24-JUL-05
Guy Himuro 15-NOV-06
Karen Colmenares 10-AUG-07

6 rows selected.

We confirm we are looking at the right 10053 trace file by checking the text, and true enough, the hints match. If
we now search for the word “hint” we’ll find a section at the end of the trace file called “Dumping Hints”. See Figure 5-8.

The important thing about this small section of the file is to note that used=0. This means the hint was not used. It
was ignored completely. In fact both hints were ignored, which then allowed the optimizer to make its own decisions,
which resulted in the hash join being used. The execution of the SQL resulted in no error. We did not get an error
message from the optimizer saying there was something wrong with the hints. This information was hidden away
in a 10053 trace file (if we asked for it). So what was wrong? The err code is 4, which means that there was a conflict
with another hint. In this case both hints are taking each other out. The important thing to note here is that the third
execution of the SQL above did not generate an error. The optimizer recognized the hints, found they were conflicting
with each other, ignored them and developed a plan without them.

Figure 5-8. The hints section of the 10053 trace file

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

90

Cost Calculations
The most important job that the optimizer does is to compare costs between different execution plans. That’s the
overall plan of course. The cost of the execution plan is made up of the cost of each line in the execution plan, and
each line is based on calculations that depend on statistics. The different plans calculated are based on different
access paths, join methods and order of access of different parts of the query. Sounds like fun doesn’t it? If you had
seven different tables you could choose an order of processing in seven ways (that’s seven factorial, which translates
to 7x6x5x4x3x2x1)! That’s 5,040 ways total, and that’s before you consider the different ways of accessing the tables
in the first place. The optimizer chooses a reasonable plan, picks the outer table and works down, tries a few
combinations, and quickly eliminates those options that already exceed the cost of previous plans it has tried (this is
highly simplified). So if, for example, the first plan the optimizer guesses is going to cost 1,000, the second plan will
be abandoned if halfway through the cost calculations the plan reaches 1,500. In this case there is no need to keep
calculating. It does this to save time in the overall hard parsing elapsed time. It knows you are hungry for results. Once
you know that the 10053 is a story about how the optimizer derived its plan based on this approach, the trace file
begins to make some sense.

After it gives some basic information about parameters and the SQL being considered and any possible query
transformations that might apply, the cost-based optimizer launches into some basic information about the cost of
accessing the objects involved. So for example in Figure 5-9 there is shown some basic information about the table
EMPLOYEES (twice in this case).

Figure 5-9. A section in the 10053 showing BASE STATISTICAL INFORMATION

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

91

Once we have all this base information about the table and its indexes (note we also have the clustering
factor CLUF in this basic information), we can start to determine how to get the information the cheapest way. For
example, the CBO will consider a single table access path and from that will consider a Tablescan (cost 3) or index
(AllEqRange) (cost 2) and then tell us which was cheapest: Best:: AccessPath: IndexRange. Figure 5-10 illustrates
the section in the 10053 that shows this.

Once this is done the optimizer considers join orders, in this case only to another version of the table
EMPLOYEES. An example of the optimizer abandoning its calculations is shown in Figure 5-11.

Figure 5-10. what the optimizer thought of table EMPLOYEES

Figure 5-11. The optimizer abandons a join because it’s greater than the best so far cost

CHAPTER 5 ■ TROUBLESHOOTING QUERY TRANSFORMATIONS

92

Now that we’ve covered some of the information that you can get from a 10053 trace file, you know how useful
it is. From a careful reading of the trace file you should now be able to see why the optimizer chose to do what it did:
which access paths it considered and why it rejected some of them. And if you feel that some of the access paths
should not have been rejected, you should be able to work back to the root cause and determine the answer to that
age old question of all DBAs: “Why did it not use my index?”

Summary
SQLTXPLAIN is a wonderful tool, and it generates the 10053 trace file by default in most cases. While it is sometimes
difficult to understand, there is a mine of information that helps you tune your SQL when things are going wrong.
In the next chapter we’ll cover SQL*Profiles and what to do when an emergency strikes and we need the right
performance, fast!

93

CHAPTER 6

Forcing Execution Plans
Through Profiles

Sometimes it’s best to fix a problem and figure out afterward what went wrong and determine the root cause. By this I
mean that when there are production time pressures to get something done, any way that works is good enough. The
idea is to get the business back up and running, then sit at your leisure and work out what went wrong, figure out how
to stop it from happening again, and develop a plan to implement the permanent fix in a controlled manner during a
planned outage if required. Management is not usually very tolerant of perfectionists who want to understand every
detail of a problem and its solution before acting: and if they are tolerant, it’s because they have another system in
their pocket that’s keeping the lights on and the business going.

The scenario I am about to describe is rare, but it does happen. An overnight batch job, one that is time
critical (has to be finished by a certain time), suddenly starts taking much longer to run. The online day is affected,
management reports are not produced on time (if at all), and the DBAs and developers are at a loss. Nothing was
changed (which is never true), no releases to production, no parameter changes, no changes in statistics gathering.
This is when you often hear the plaintive cry: “What’s it doing?”

This is a good question to ask when you are trying to fix a problem properly; but when you need the system to
behave the way it did before, there’s a short cut. This technique of fixing the problem without understanding the
problem is often referred to as the “Severity 1 killer”. This is because Severity 1 service requests at Oracle are the
highest priority: if there is a way to fix the problem, then go for it. Understand it later.

So how do you do this? SQLT has the tools to get the job done (most of the time). As part of SQLT modus
operandi, SQLT produces a script that uses an SQL profile. This SQL profile (if it is the “good” execution plan), can
be applied to the troublesome SQL, which then forces the SQL to run “properly” despite whatever else is happening
on the system (wrong statistics, changed parameters, etc). SQL profiles, despite the introduction of SQL plan
management, are still useful. In the version of Oracle to come, however, expect SQL plan baselines to become a better
product. For now, however, let’s look at what we can do with SQL profiles.

What is an SQL Profile?
Although the title of this chapter is “Forcing Execution Plans Through Profiles,” SQL profiles do not exactly force an
execution plan. They are more like “super hints.” With hints there is always the possibility that the optimizer will
find yet another way of doing the query, with your hint that isn’t what you want. Super hints, on the other hand,
have specified so many constraints on the execution plan that the optimizer (usually) has no choices left. The word
“profile” in this context is quite descriptive. The optimizer has seen this SQL statement go through many times and
has determined that it behaves in a certain way: it accesses rows in a certain order and consistently uses a particular
index. All this profiling information is gathered and kept for the query and can be used to “force” the statement to
behave in the same way in the future if its new behavior is suboptimal.

CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES

94

Can SQL profiles be a bad thing? Let’s examine an analogy. Everyone has their routines they stick to. Get up,
brush your teeth, eat breakfast, go to work, drive home, read the newspaper, etc. The “profile” in this case is fairly
simple. Make sure to brush your teeth before going to work, otherwise you might have to come back home to do it. If
somebody wiped your memory (perhaps a tuning book fell off a shelf and bumped you on the head), and you forgot
your routine, you might want a reminder of your previous routine until your memory returned. This routine forcing,
or “profile,” might be a good thing if nothing else had changed. Suppose, however, that you had also moved into a
new house and now worked from home. Your profile might now be completely out of date. Driving to work would no
longer make sense. Here we see that a profile might be good for a short while to get things back to normal, but every
so often you need to check that the profile still makes sense.

So what does a super hint look like? Here’s one:

h := SYS.SQLPROF_ATTR(
 '[BEGIN_OUTLINE_DATA]',
 '[IGNORE_OPTIM_EMBEDDED_HINTS]',
 '[OPTIMIZER_FEATURES_ENABLE('11.2.0.1')]',
 '[DB_VERSION('11.2.0.1')]',
 '[ALL_ROWS]',
 '[OUTLINE_LEAF(@"SEL$E9AF9BDE")]',
 '[MERGE(@"SEL$CE1D94FA")]',
 '[OUTLINE(@"SEL$98588D1C")]',
 '[UNNEST(@"SEL$6")]',
 '[OUTLINE(@"SEL$CE1D94FA")]',
 '[OUTLINE(@"SEL$C50F9DEF")]',
 '[OUTLINE(@"SEL$6")]',
 '[OUTLINE(@"SEL$81719215")]',
 '[MERGE(@"SEL$EE94F965")]',
 '[OUTLINE(@"SEL$5")]',
 '[OUTLINE(@"SEL$EE94F965")]',
 '[MERGE(@"SEL$9E43CB6E")]',
 '[OUTLINE(@"SEL$4")]',
 '[OUTLINE(@"SEL$9E43CB6E")]',
 '[MERGE(@"SEL$58A6D7F6")]',
 '[OUTLINE(@"SEL$3")]',
 '[OUTLINE(@"SEL$58A6D7F6")]',
 '[MERGE(@"SEL$1")]',
 '[OUTLINE(@"SEL$2")]',
 '[OUTLINE(@"SEL$1")]',
 '[INDEX_RS_ASC(@"SEL$E9AF9BDE" "TABLE1"@"SEL$4" "TABLE1"."TABLE_NAME" "TABLE1"."STATUS"
"TABLE1"."CATEGORY"))]',
 '[INDEX_RS_ASC(@"SEL$E9AF9BDE" "TABLE2"@"SEL$3" ("TABLE2"."COL2" TABLE2"."COL1" "TABLE2"."COL3"))]',
 '[INDEX(@"SEL$E9AF9BDE" "TABLE3"@"SEL$2" ("TABLE3"."COL2" TABLE3"."COL1"))]',
 '[FULL(@"SEL$E9AF9BDE" "TABLE4"@"SEL$1")]',
 '[INDEX_RS_ASC(@"SEL$E9AF9BDE" "TABLE1"@"SEL$6" ("TABLE1"."TABLE_NAME" "TABLE1"."STATUS"
"TABLE1"."CATEGORY"))]',
 '[INDEX_RS_ASC(@"SEL$E9AF9BDE" "TABLE2"@"SEL$6" ("TABLE2"."COL2" "TABLE2"."COL1" "TABLE2"."COL3"))]',
 '[LEADING(@"SEL$E9AF9BDE" "TABLE1"@"SEL$4" "TABLE2"@"SEL$3" "TABLE3"@"SEL$2" "TABLE4"@"SEL$1"
"TABLE1"@"SEL$6" "TABLE2"@"SEL$6")]',
 '[USE_NL(@"SEL$E9AF9BDE" "TABLE2"@"SEL$3")]',
 '[USE_NL(@"SEL$E9AF9BDE" "TABLE3"@"SEL$2")]',
 '[NLJ_BATCHING(@"SEL$E9AF9BDE" "TABLE3"@"SEL$2")]',

CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES

95

 '[USE_HASH(@"SEL$E9AF9BDE" "TABLE4"@"SEL$1")]',
 '[USE_MERGE_CARTESIAN(@"SEL$E9AF9BDE" "TABLE1"@"SEL$6")]',
 '[USE_NL(@"SEL$E9AF9BDE" "TABLE2"@"SEL$6")]',
 '[PX_JOIN_FILTER(@"SEL$E9AF9BDE" "TABLE4"@"SEL$1")]',
 '[USE_HASH_AGGREGATION(@"SEL$E9AF9BDE")]',
 '[END_OUTLINE_DATA]');

Notice how the hint is more verbose than the normal hint you would use to tune an SQL statement. Still, there
are recognizable parts after the standard preamble (which includes BEGIN_OUTLINE_DATA, IGNORE_OPTIM_EMBEDDED_
HINTS, OPTIMIZER_FEATURES_ENABLE('11.2.0.1') and DB_VERSION('11.2.0.1')). Let’s list the more familiar parts:

• ALL_ROWS

• MERGE

• INDEX_RS_ASC

• FULL

• USE_NL

• NLJ_BATCHING

• PX_JOIN_FILTERING

• USE_MERGE_CARTESIAN

You’ll also notice that the references made are to obscure objects such as SEL$3 and SEL$E9AF9BDE (which are
properly called “query block names”). Remember that the optimizer has transformed the SQL (through the use of
query transformations as described in Chapter 5) before it gets to do more detailed cost-based tuning. During the
transformation, the various sections of the query get these exotic names (which are unrecognizable). The profile hints
then refer to these names.

So now we know what an SQL profile is and how it looks to the optimizer. We also know that keeping an
unchanging profile on an SQL statement might be a bad plan. Having said all that we still know getting the production
database back to an operational state might be the difference between success and failure. So with all these provisos
and limitations, let’s find out where SQLT gets its SQL profile.

Where Does SQLT Get Its SQL Profile?
To get the script that creates the SQL profile for you is simple. SQLT generates the required script from both the SQLT
XTRACT method and from the XECUTE method. We saw in Chapter 1 how to generate an XTRACT report, and we
covered XECUTE in Chapter 3. Make a note of the SQLT ID (not the SQL ID) of the report and the plan hash value that
you want. See Figure 6-1 below. This shows the SQLT ID, it’s the number in the title “Report: sqlt_s89915_main.html”.
In this case the SQLT ID is 89915.

CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES

96

The plan hash value (PHV) can be obtained from the “Execution Plans” section of the report. See Figure 6-2 for
the section showing which plan hash values are available.

Figure 6-1. The header page shows the SQLT ID, needed for generating the profile

Figure 6-2. Execution plans available and the Plan Hash Values (PHV)

So now we have both the SQLT ID and the PHV. In the utl directory under the SQLT installation area we can
now run the script that will generate the profile, as shown in the following example. However, before you do that on a
production system you should consult Oracle Support to make sure your steps are validated and supported actions.
Just open a ticket and the friendly people at tuning support will be more than happy to help you. Here is the directory
listing showing the files in the utl directory. From that directory we then enable the profile creation and then run the

CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES

97

routine to generate the profile, making sure to pass in the SQLT ID and the PHV. I’ve shown the output from the script,
and then at the end I show the new file created. It’s that easy.

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl>dir
 Volume in drive C has no label.
 Volume Serial Number is 77E9-80B4

 Directory of C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl

09/01/2012 09:23 AM <DIR> .
09/01/2012 09:23 AM <DIR> ..
07/02/2011 12:49 AM 130 10053.sql
04/02/2012 12:43 PM 4,828 coe_gen_sql_profile.sql
08/18/2012 11:25 AM 1,185 coe_gen_sql_profile_.zip
06/02/2012 05:28 AM 10,305 coe_load_sql_baseline.sql
04/02/2012 12:43 PM 12,007 coe_load_sql_profile.sql
05/02/2012 11:27 AM 18,248 coe_xfr_sql_profile.sql
07/02/2011 12:49 AM 101 flush.sql
08/18/2012 11:25 AM 33 missing_file.txt
07/02/2011 12:49 AM 184 plan.sql
06/02/2012 05:28 AM 22,527 profiler.sql
06/02/2012 05:28 AM 73,472 pxhcdr.sql
06/02/2012 05:28 AM 71,213 roxecute.sql
06/02/2012 05:28 AM 70,126 roxtract.sql
08/11/2011 03:46 AM 475 sel.sql
02/02/2012 01:19 PM 435 sel_aux.sql
06/02/2012 05:28 AM 160,393 sqlhc.sql
01/03/2012 12:04 AM 2,891 sqltcdirs.sql
08/11/2011 03:46 AM 4,014 sqlthistfile.sql
08/11/2011 03:46 AM 3,116 sqlthistpurge.sql
04/02/2012 12:43 PM 3,694 sqltimp.sql
04/02/2012 12:43 PM 2,927 sqltimpfo.sql
01/03/2012 12:04 AM 3,545 sqltlite.sql
03/02/2012 04:06 PM 3,900 sqltmain.sql
09/01/2012 09:23 AM 6,582 sqltprofile.log
01/03/2012 12:04 AM 5,469 sqltprofile.sql <<<Script we are going to use
08/18/2012 09:33 AM 74 x.sql
02/18/2012 10:04 AM <DIR> xgram
02/02/2012 12:15 PM <DIR> xhume
06/01/2012 09:39 AM <DIR> xplore
 27 File(s) 486,021 bytes
 5 Dir(s) 11,102,261,248 bytes free

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl>sqlplus stelios/oracle

SQL*Plus: Release 11.2.0.1.0 Production on Sat Sep 1 09:24:34 2012

Copyright (c) 1982, 2010, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES

98

SQL> EXEC sqltxplain.sqlt$a.set_param('custom_sql_profile', 'Y');

PL/SQL procedure successfully completed.

SQL> @sqltprofile 89915 3005811457

Please note that the sqltxplain.sqlt$a.set_param procedure is required to set this functionality. When we run
sqltprofile.sql (with a valid SQLT ID and a valid plan hash value [the first and second numbers respectively]) we
will see a result similar to the one shown below:

... please wait ...

STAID MET INSTANCE SQL_TEXT
----- --- -------- --
89906 XTR snc1 select count(*) from dba_objects
89909 XEC snc1 select s.amount_sold, c.cust_id, p.prod_name from sh
89910 XEC snc1 select s.amount_sold,c.cust_id,p.prod_name from sh.products
89911 XEC snc1 select s.amount_sold,c.cust_id,p.prod_name from sh.products
89912 XTR snc1 select s.amount_sold,c.cust_id,p.prod_name from sh.products
89913 XTR snc1 select sql_id from v$sql where sql_text like '%select count(
89914 XTR snc1 select count(*) from test3 where object_type like '%TAB%' an
89915 XTR snc1 select s.amount_sold,c.cust_id,p.prod_name from sh.products
89916 XTR snc1 select s.amount_sold,c.cust_id,p.prod_name from sh.products
Parameter 1:
STATEMENT_ID (required)

PLAN_HASH_VALUE ATTRIBUTE
--------------- ---------
 665279032
 725901306 [B][W]
 3005811457

Parameter 2:
PLAN_HASH_VALUE (required)

Values passed to sqltprofile:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STATEMENT_ID   : "89915"
PLAN_HASH_VALUE: "3005811457"
... getting sqlt_s89915_p3005811457_sqlprof.sql out of sqlt repository ...
sqlt_s89915_p3005811457_sqlprof.sql has been generated
SQLTPROFILE completed.
SQL>

Now that the script has run, where do you find the script to create a SQL Profile? The SQL script can be found in 
the same directory where the profile script was. The directory command below shows the file in the directory, which 
I’ve indicated with a New File pointer.

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl>dir *.sql
 Volume in drive C has no label.
 Volume Serial Number is 77E9-80B4
 



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

99

 Directory of C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl
 
07/02/2011  12:49 AM               130 10053.sql
04/02/2012  12:43 PM             4,828 coe_gen_sql_profile.sql
06/02/2012  05:28 AM            10,305 coe_load_sql_baseline.sql
04/02/2012  12:43 PM            12,007 coe_load_sql_profile.sql
05/02/2012  11:27 AM            18,248 coe_xfr_sql_profile.sql
07/02/2011  12:49 AM               101 flush.sql
07/02/2011  12:49 AM               184 plan.sql
06/02/2012  05:28 AM            22,527 profiler.sql
06/02/2012  05:28 AM            73,472 pxhcdr.sql
06/02/2012  05:28 AM            71,213 roxecute.sql
06/02/2012  05:28 AM            70,126 roxtract.sql
08/11/2011  03:46 AM               475 sel.sql
02/02/2012  01:19 PM               435 sel_aux.sql
06/02/2012  05:28 AM           160,393 sqlhc.sql
01/03/2012  12:04 AM             2,891 sqltcdirs.sql
08/11/2011  03:46 AM             4,014 sqlthistfile.sql
08/11/2011  03:46 AM             3,116 sqlthistpurge.sql
04/02/2012  12:43 PM             3,694 sqltimp.sql
04/02/2012  12:43 PM             2,927 sqltimpfo.sql
01/03/2012  12:04 AM             3,545 sqltlite.sql
03/02/2012  04:06 PM             3,900 sqltmain.sql
01/03/2012  12:04 AM             5,469 sqltprofile.sql
09/01/2012  09:29 AM             4,147 sqlt_s89915_p3005811457_sqlprof.sql <<<New file
08/18/2012  09:33 AM                74 x.sql
              24 File(s)        478,221 bytes
               0 Dir(s)  11,099,074,560 bytes free

What Can You Do with a SQL Profile?
Now that we have the sqlt_s89915_p3005811457_sqlprof.sql script, what can we do with it? In broad terms, we can 
run this script on the database where the SQL is executing and this will freeze the execution plan for that SQL ID. It 
can also be used to freeze an execution plan on another system. So for example if your development system has the 
right execution plan and your production system does not, you can transfer the execution plan. In a situation where 
the production database is in an unusable state because some vital piece of SQL is using the wrong execution plan 
and consequently running too slowly to fit into the execution window, this script alone is worth the price of this book. 
Let’s look at the script.

SPO sqlt_s89915_p3005811457_sqlprof.log;
SET ECHO ON TERM ON LIN 2000 TRIMS ON NUMF 99999999999999999999;
REM
REM $Header: 215187.1 sqlt_s89915_p3005811457_sqlprof.sql 11.4.4.6 2012/09/01 carlos.sierra $
REM
REM Copyright (c) 2000-2012, Oracle Corporation. All rights reserved.
REM
REM AUTHOR
REM   carlos.sierra@oracle.com
REM
REM SCRIPT

https://carlos.sierra@oracle.com


CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

100

REM   sqlt_s89915_p3005811457_sqlprof.sql
REM
REM SOURCE
REM   Host    : LOCUTUS
REM   DB Name : SNC1
REM   Platform: 32-bit Windows
REM   Product : Oracle Database 11g Enterprise Edition (Production)
REM   Version : 11.2.0.1.0
REM   Language: US:AMERICAN_AMERICA.WE8MSWIN1252
REM   EBS     : NO
REM   Siebel  : NO
REM   PSFT    : NO
REM
REM DESCRIPTION
REM   This script is generated automatically by the SQLT tool.
REM   It contains the SQL*Plus commands to create a custom
REM   SQL Profile based on plan hash value 3005811457.
REM   The custom SQL Profile to be created by this script
REM   will affect plans for SQL commands with signature
REM   matching the one for SQL Text below.
REM   Review SQL Text and adjust accordingly.
REM
REM PARAMETERS
REM   None.
REM
REM EXAMPLE
REM   SQL> START sqlt_s89915_p3005811457_sqlprof.sql; <<< Note 1.
REM
REM NOTES
REM   1. Should be run as SYSTEM or SYSDBA.
REM   2. User must have CREATE ANY SQL PROFILE privilege.
REM   3. SOURCE and TARGET systems can be the same or similar.
REM   4. To drop this custom SQL Profile after it has been created:
REM      EXEC DBMS_SQLTUNE.DROP_SQL_PROFILE('sqlt_s89915_p3005811457'); <<<Note 2.
REM   5. Be aware that using DBMS_SQLTUNE requires a license
REM      for the Oracle Tuning Pack. <<< Note 3.
REM   6. If you modified a SQL putting Hints in order to produce a desired
REM      Plan, you can remove the artifical Hints from SQL Text pieces below.
REM      By doing so you can create a custom SQL Profile for the original
REM      SQL but with the Plan captured from the modified SQL (with Hints).
REM
WHENEVER SQLERROR EXIT SQL.SQLCODE;

VAR signature NUMBER;

DECLARE
  sql_txt CLOB;
  h       SYS.SQLPROF_ATTR;
  PROCEDURE wa (p_line IN VARCHAR2) IS
  BEGIN
    DBMS_LOB.WRITEAPPEND(sql_txt, LENGTH(p_line), p_line);
  END wa;

q



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

101

BEGIN
  DBMS_LOB.CREATETEMPORARY(sql_txt, TRUE); <<< Note 4
  DBMS_LOB.OPEN(sql_txt, DBMS_LOB.LOB_READWRITE);
  -- SQL Text pieces below do not have to be of same length.
  -- So if you edit SQL Text (i.e. removing temporary Hints),
  -- there is no need to edit or re-align unmodified pieces.
  wa(q'[select  s.amount_sold,c.cust_id,p.prod_name from sh.products p,s]'); <<< Note 5
  wa(q'[h.sales s,sh.customers c where
  c.cust_id=s.cust_id and s.prod_]');
  wa(q'[id=p.prod_id and c.cust_first_name='Theodorick' ]');
  DBMS_LOB.CLOSE(sql_txt);
  h := SYS.SQLPROF_ATTR(
  q'[BEGIN_OUTLINE_DATA]',
  q'[SWAP_JOIN_INPUTS(@"SEL$1" "P"@"SEL$1")]',
  q'[USE_HASH(@"SEL$1" "P"@"SEL$1")]',
  q'[NLJ_BATCHING(@"SEL$1" "S"@"SEL$1")]',
  q'[USE_NL(@"SEL$1" "S"@"SEL$1")]',
  q'[LEADING(@"SEL$1" "C"@"SEL$1" "S"@"SEL$1" "P"@"SEL$1")]',
  q'[FULL(@"SEL$1" "P"@"SEL$1")]',
  q'[INDEX(@"SEL$1" "S"@"SEL$1" ("SALES"."CUST_ID"))]',
  q'[INDEX(@"SEL$1" "C"@"SEL$1" ("CUSTOMERS"."CUST_FIRST_NAME" "CUSTOMERS"."CUST_ID"))]',
  q'[OUTLINE_LEAF(@"SEL$1")]',
  q'[ALL_ROWS]',
  q'[DB_VERSION('11.2.0.1')]',
  q'[OPTIMIZER_FEATURES_ENABLE('11.2.0.1')]',
  q'[IGNORE_OPTIM_EMBEDDED_HINTS]',
  q'[END_OUTLINE_DATA]');
 
  :signature := DBMS_SQLTUNE.SQLTEXT_TO_SIGNATURE(sql_txt); <<< Note 6
 
  DBMS_SQLTUNE.IMPORT_SQL_PROFILE ( <<< Note 7
    sql_text    => sql_txt,
    profile     => h,
    name        => 'sqlt_s89915_p3005811457',
    description => 's89915_snc1_locutus 6ga32aw0dn2sd 3005811457 '||:signature,
    category    => 'DEFAULT',
    validate    => TRUE,
    replace     => TRUE,
    force_match => FALSE /* TRUE:FORCE (match even when different literals in SQL).  
FALSE:EXACT (similar to CURSOR_SHARING) */ ); 
    DBMS_LOB.FREETEMPORARY(sql_txt);
END;
/
 
WHENEVER SQLERROR CONTINUE;
SET ECHO OFF;
PRINT signature
PRO
PRO ... manual custom SQL Profile has been created
PRO
SET TERM ON ECHO OFF LIN 80 TRIMS OFF NUMF "";



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

102

SPO OFF;
PRO
PRO SQLPROFILE completed.

You do not need to know any of the details of how this code works; in an emergency situation you would just 
follow the instructions and then make your system behave as required.

1. SQL> START sqlt_s89915_p3005811457_sqlprof.sql; - This is how you run the SQL 
script. As it says in the notes you should use a suitably privileged account, such as SYS.

2. SQL> EXEC DBMS_SQLTUNE.DROP_SQL_PROFILE('sqlt_s89915_p3005811457'); If for 
some reason you do not want to keep the profile (for example, you’ve found the long term 
solution to your SQL performance problem) you can execute this command line, and the 
SQL profile will be dropped.

3. You must have the Oracle license for the tuning pack for the system on which you apply 
this code.

4. This is the code where a LOB is created to store your SQL text.

5. A series of calls to the procedure wa (Write Append) are used to store more and more of 
your SQL text until it is all stored in sql_text.

6. Create a signature for the SQL text.

7. Import the SQL profile. The procedure IMPORT_SQL_PROFILE takes the following 
parameters:

a. The sql_text of the query

b. The hint (h) for the query

c. A name for the SQL profile (sqlt_s89915_p3005811457 in this example)

d. Some text to describe the profile, based on the SQLT ID, the SQL ID the plan hash 
value and the signature.

e. A category, which is set to DEFAULT

f. A setting to validate the SQL profile

g. A setting to replace any existing profiles on the same SQL text

h. A force_match flag, which is set to FALSE by default but should be set to TRUE if  
your SQL uses literal values and you want all occurrences of the SQL to use the  
same profile.

Let’s see an example run of the script. I haven’t set the force_match flag in this example because I don’t need it, 
but on a system with SQL using literals I will set the force_match flag to TRUE. In the example below I have run the 
profile script that was created above. This script is now a stand-alone script that generates the profile for a particular 
SQL ID and uses the plan for a particular PHV. It has no other purpose. Hence it takes no parameters. We know that 
the script has completed because we see the message “SQLPROFILE completed”. Once this script has finished there is 
nothing more to do except find the long term solution!

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl>sqlplus stelios/oracle
 
SQL*Plus: Release 11.2.0.1.0 Production on Sat Sep 1 10:53:17 2012
 
Copyright (c) 1982, 2010, Oracle.  All rights reserved.
 



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

103

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
 
SQL> @sqlt_s89915_p3005811457_sqlprof.sql
SQL> REM
SQL> REM $Header: 215187.1 sqlt_s89915_p3005811457_sqlprof.sql 11.4.4.6 2012/09/01 carlos.sierra $
SQL> REM
SQL> REM Copyright (c) 2000-2012, Oracle Corporation. All rights reserved.
SQL> REM
SQL> REM AUTHOR
SQL> REM   carlos.sierra@oracle.com
SQL> REM
SQL> REM SCRIPT
SQL> REM   sqlt_s89915_p3005811457_sqlprof.sql
SQL> REM
SQL> REM SOURCE
SQL> REM   Host    : LOCUTUS
SQL> REM   DB Name : SNC1
SQL> REM   Platform: 32-bit Windows
SQL> REM   Product : Oracle Database 11g Enterprise Edition (Production)
SQL> REM   Version : 11.2.0.1.0
SQL> REM   Language: US:AMERICAN_AMERICA.WE8MSWIN1252
SQL> REM   EBS     : NO
SQL> REM   Siebel  : NO
SQL> REM   PSFT    : NO
SQL> REM
SQL> REM DESCRIPTION
SQL> REM   This script is generated automatically by the SQLT tool.
SQL> REM   It contains the SQL*Plus commands to create a custom
SQL> REM   SQL Profile based on plan hash value 3005811457.
SQL> REM   The custom SQL Profile to be created by this script
SQL> REM   will affect plans for SQL commands with signature
SQL> REM   matching the one for SQL Text below.
SQL> REM   Review SQL Text and adjust accordingly.
SQL> REM
SQL> REM PARAMETERS
SQL> REM   None.
SQL> REM
SQL> REM EXAMPLE
SQL> REM   SQL> START sqlt_s89915_p3005811457_sqlprof.sql;
SQL> REM
SQL> REM NOTES
SQL> REM   1. Should be run as SYSTEM or SYSDBA.
SQL> REM   2. User must have CREATE ANY SQL PROFILE privilege.
SQL> REM   3. SOURCE and TARGET systems can be the same or similar.
SQL> REM   4. To drop this custom SQL Profile after it has been created:
SQL> REM         EXEC DBMS_SQLTUNE.DROP_SQL_PROFILE('sqlt_s89915_p3005811457');
SQL> REM   5. Be aware that using DBMS_SQLTUNE requires a license
SQL> REM         for the Oracle Tuning Pack.
SQL> REM   6. If you modified a SQL putting Hints in order to produce a desired

https://carlos.sierra@oracle.com


CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

104

SQL> REM         Plan, you can remove the artifical Hints from SQL Text pieces below.
SQL> REM         By doing so you can create a custom SQL Profile for the original
SQL> REM         SQL but with the Plan captured from the modified SQL (with Hints).
SQL> REM
SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE;
SQL>
SQL> VAR signature NUMBER;
SQL>
SQL> DECLARE
  2    sql_txt CLOB;
  3    h          SYS.SQLPROF_ATTR;
  4    PROCEDURE wa (p_line IN VARCHAR2) IS
  5    BEGIN
  6      DBMS_LOB.WRITEAPPEND(sql_txt, LENGTH(p_line), p_line);
  7    END wa;
  8  BEGIN
  9    DBMS_LOB.CREATETEMPORARY(sql_txt, TRUE);
 10    DBMS_LOB.OPEN(sql_txt, DBMS_LOB.LOB_READWRITE);
 11    -- SQL Text pieces below do not have to be of same length.
 12    -- So if you edit SQL Text (i.e. removing temporary Hints),
 13    -- there is no need to edit or re-align unmodified pieces.
 14    wa(q'[select     s.amount_sold,c.cust_id,p.prod_name from sh.products p,s]');
 15    wa(q'[h.sales s,sh.customers c where
 16    c.cust_id=s.cust_id and s.prod_]');
 17    wa(q'[id=p.prod_id and c.cust_first_name='Theodorick' ]');
 18    DBMS_LOB.CLOSE(sql_txt);
 19    h := SYS.SQLPROF_ATTR(
 20    q'[BEGIN_OUTLINE_DATA]',
 21    q'[SWAP_JOIN_INPUTS(@"SEL$1" "P"@"SEL$1")]',
 22    q'[USE_HASH(@"SEL$1" "P"@"SEL$1")]',
 23    q'[NLJ_BATCHING(@"SEL$1" "S"@"SEL$1")]',
 24    q'[USE_NL(@"SEL$1" "S"@"SEL$1")]',
 25    q'[LEADING(@"SEL$1" "C"@"SEL$1" "S"@"SEL$1" "P"@"SEL$1")]',
 26    q'[FULL(@"SEL$1" "P"@"SEL$1")]',
 27    q'[INDEX(@"SEL$1" "S"@"SEL$1" ("SALES"."CUST_ID"))]',
 28    q'[INDEX(@"SEL$1" "C"@"SEL$1" ("CUSTOMERS"."CUST_FIRST_NAME" "CUSTOMERS"."CUST_ID"))]',
 29    q'[OUTLINE_LEAF(@"SEL$1")]',
 30    q'[ALL_ROWS]',
 31    q'[DB_VERSION('11.2.0.1')]',
 32    q'[OPTIMIZER_FEATURES_ENABLE('11.2.0.1')]',
 33    q'[IGNORE_OPTIM_EMBEDDED_HINTS]',
 34    q'[END_OUTLINE_DATA]');
 35
 36    :signature := DBMS_SQLTUNE.SQLTEXT_TO_SIGNATURE(sql_txt);
 37
 38    DBMS_SQLTUNE.IMPORT_SQL_PROFILE (
 39      sql_text    => sql_txt,
 40      profile     => h,
 41      name        => 'sqlt_s89915_p3005811457',
 42      description => 's89915_snc1_locutus 6ga32aw0dn2sd 3005811457 '||:signature,
 43      category    => 'DEFAULT',



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

105

 44      validate    => TRUE,
 45      replace     => TRUE,
 46      force_match => FALSE /* TRUE:FORCE (match even when different literals in SQL).  
FALSE:EXACT (similar to CURSOR_SHARING) */ );
 47      DBMS_LOB.FREETEMPORARY(sql_txt);
 48  END;
 49  /
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> WHENEVER SQLERROR CONTINUE;
SQL> SET ECHO OFF;
 
            SIGNATURE
---------------------
     4850905917262832
 
... manual custom SQL Profile has been created
 
SQLPROFILE completed.
SQL>

At the end of this script the SQL profile is attached to the SQL ID and should use the same plan as shown in the 
outline section of the script. The three-step plan in case of emergency (emergency drop in SQL performance)

1. Break open SQLT

2. Run sqltprofile.sql (license permitting)

3. Set the force_match flag to TRUE (if using literals) and run the script.

How Do You Confirm You Are Using an SQL Profile?
To confirm that the SQL Profile is working we need to run the SQL from the SQL prompt or re-run SQLT and look at 
the display showing the SQL profiles being used. Below is an example where I have run the SQL manually and got the 
execution plan.

i



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

106

SQL> @q1
1127 rows selected.
 
Execution Plan
----------------------------------------------------------
Plan hash value: 1574422790
--------------------------------------------------------------------------------------------
| Id  |Operation                           |Name                |Rows |Cost (%CPU)|Time    |
--------------------------------------------------------------------------------------------
|   0 |SELECT STATEMENT                    |                    | 5557| 7035   (1)|00:01:25|
|*  1 | HASH JOIN                          |                    | 5557| 7035   (1)|00:01:25|
|   2 |  TABLE ACCESS FULL                 |PRODUCTS            |   72|    3   (0)|00:00:01|
|   3 |  NESTED LOOPS                      |                    |     |           |        |
|   4 |   NESTED LOOPS                     |                    | 5557| 7032   (1)|00:01:25|
|*  5 |    TABLE ACCESS BY INDEX ROWID     |CUSTOMERS           |   43| 2366   (1)|00:00:29|
|   6 |     BITMAP CONVERSION TO ROWIDS    |                    |     |           |        |
|   7 |      BITMAP INDEX FULL SCAN        |CUSTOMERS_GENDER_BIX|     |           |        |
|   8 |    PARTITION RANGE ALL             |                    |     |           |        |
|   9 |     BITMAP CONVERSION TO ROWIDS    |                    |     |           |        |
|* 10 |      BITMAP INDEX SINGLE VALUE     |SALES_CUST_BIX      |     |           |        |
|  11 |   TABLE ACCESS BY LOCAL INDEX ROWID|SALES               |  130| 7032   (1)|00:01:25|
--------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - access("S"."PROD_ID"="P"."PROD_ID")
   5 - filter("C"."CUST_FIRST_NAME"='Theodorick')
  10 - access("C"."CUST_ID"="S"."CUST_ID")
Note
-----
   - SQL profile "sqlt_s89915_p3005811457" used for this statement
Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
       5782  consistent gets
          0  physical reads
          0  redo size
      49680  bytes sent via SQL*Net to client
       1241  bytes received via SQL*Net from client
         77  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
       1127 rows processed

If you look at the execution plan, you’ll see that a note is appended stating SQL profile "sqlt_s89915_
p3005811457" used for this statement.  If a SQLT XECUTE report was run against this system and this SQL ID you 
would see this header page (see Figure 6-3) from which you could look at the execution plans created.



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

107

From here, click on Execution Plans. We see now that the sql_profile text is present and highighted in the Plan 
Info column. See Figure 6-4, which shows this section of the report.

Figure 6-3. Shows the top of the SQLT HTML report sqlt_s89918_main.html file



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

108

How Do You Transfer an SQL Profile from One Database  
to Another?
In many cases SQLT is considered too intrusive to database operations (it isn’t) or there are strict rules on a particular 
site that disallow the use of SQLT directly on a production database. In such cases there will often be a development or 
staging environment where test SQL can be run against a representative workload (i.e., one with enough data, which is 
up to date). In cases like these you can often get the right execution plan in the development or staging environment, 
but can’t in the production environment. Either because you don’t have time to correct statistics or some other factor 
prevents you from correcting production in a timely manner. In such cases, after confirming with Oracle support, you 
can create an SQL profile on one system and transfer it to production. You can follow the steps described in the Oracle 
Support Note “How To Move SQL Profiles From One Database To Another Database [ID 457531.1]” or follow the steps 
described here, which are a simplified version of the note steps using SQLT. 

1. Create an SQL profile script on your staging or development system (as described above). 
The SQL profile should be based on SQL text that matches the SQL text on the production 
system where you are going to transfer the SQL profile. The end result of this step is an  
SQL Profile.

2. On the Development or Staging system create a staging table with the commands

SQL> exec dbms_sqltune.create_stgtab_sqlprof(table_name=>'STAGE', schema_name='STELIOS');

3. Pack the SQL profile into the staging area just created with the commands

SQL> exec dbms_sqltune.pack_stgtab_sqlprof(staging_table_name=>'STAGE',  profile_name=>' 
sqlt_s89915_p3005811457');

Figure 6-4. shows the Execution Plans section of the SQLT HTML report. This is the left hand side of the page. There are 
more details available on the right hand side of the page. Note the use of sql_profile in the Plan Info column 

f



CHAPTER 6 ■ FORCING EXECUTION PLANS THROUGH PROFILES 

109

4. Export from the development or staging system the SQL Profile Staging table either with 
exp or expdp.

5. Import the dump file using imp or impdp into the production environment

6. Unpack the staging table using the command

SQL> exec dbms_sqltune.unpack_stgtab_sqlprof(replace=>TRUE, staging_table_name=>'STAGE');

Once you have carried out these steps your target SQL should run with the execution plan from your 
development or staging environment. You can check it by getting the execution plan as we did earlier on.

Summary
As you can see SQLT is a powerful tool when used properly. Traditional tuning can seem slow and cumbersome in 
comparison after you have used SQLT for a while. This is the main objective of this book: to make you familiar with 
SQLT and then for you to use SQLT often enough to become fast and efficient at tuning SQL. In the next chapter we’ll 
look at a feature introduced in 11g called Adaptive Cursor Sharing. There is much confusion about how this feature 
works and when it is being used and under what circumstances. SQLT has a section in the main report, which is just 
for Adaptive Cursor Sharing.



111

CHAPTER 7

Adaptive Cursor Sharing

There’s no doubt that Adaptive Cursor Sharing is one of the most misunderstood and confusing optimizer areas. It 
doesn’t help that it is sometimes referred to as Intelligent Cursor Sharing or Bind Aware Peeking. Adaptive Cursor 
Sharing was introduced in 11g to take care of those pesky bind variables that keep changing. SQLTXTRACT has a 
section called “Cursor Sharing and Binds,” which can be found at the top of the main report. See Figure 7-1 to remind 
yourself. The Adaptive Cursor Sharing section is at the bottom left of the screen.

Figure 7-1. The Adaptive Cursor Sharing section can be found in the bottom left hand corner of the screen



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

112

Understanding this area of the optimizer is not helped by the documentation either. It is not exactly crystal clear 
and lacks some details that are required to understand what happens when you use this feature. I will explain this 
feature in simple terms and show examples where it has kicked into action. If you have a system where this feature is 
important, you will better be able to understand what is happening and why. You will also have the option of disabling 
the feature completely.

Bind Variables and Why We Need Them
Before we go into Adaptive Cursor Sharing (ACS), however, we need to cover some prerequisite knowledge, which will 
be required for you to follow the discussion and understand the history of ACS. Bind variables are the key component 
of SQL, which ACS relies on. They are used by programmers in Oracle systems, because over the years Oracle has told 
them that systems with many literal variables are a bad thing. This is true in the majority of cases, but even today you 
will see systems with hundreds of thousands of cursors being generated because of literal values. Often because  
SQL is being created by an application that generates SQL automatically. This is an example of a bind variable in an 
SQL statement and a literal value of an equivalent statement:

variable b varchar2(5);
exec :b := 'TABLE'
select count(object_type) from acs where object_type=:b;
select count(object_type) from acs where object_type='TABLE';

Here the bind variable is b, and it is being used in the SQL statement (a select in this case) to stand in for the 
value TABLE. It would be a reasonable question to ask, “Why do we need bind variables,” when we could just as well do

select count(object_type) from acs where object_type='TABLE';

The answer is that the overhead of hard parsing is prohibitive on busy systems and each SQL cursor’s details 
have to be kept in the shared pool, which can be a big memory overhead. Each of the statements would be exactly the 
same; we don’t want the cost-based optimizer to look in detail at each statement each time the bind variable changed. 
Back in the dim and distant past (8i), bind variables were available, but were not used very often. Oracle decided  
that more bind variables should be used to improve performance but without necessarily having bind variables.  
The cursor_sharing parameter was introduced.

The CURSOR_SHARING Parameter
The solution introduced was the cursor_sharing parameter, which had possible values of EXACT or FORCE. The 
default value was EXACT, which resulted in no change in behavior: i.e., if there was a literal value in an SQL statement 
then it was parsed and executed. If the overhead of the parsing was too high, then you could consider setting the value 
to FORCE. In this case, the literal value (in the example from above this would be ‘TABLE’), would be replaced by a 
system-defined bind variable (an example would be SYS_B_0). This resulted in an improvement in performance in 
some cases, but caused problems in some situations where the value of the binds made a difference to the execution 
plan (in other words, skewed data). A predicate with a rare value and a common value would have the same execution 
plan as they were using the same system-generated bind variable. This sometimes caused problems, so bind peeking 
was created to help. Here is an example to show the behavior:

SQL> alter session set cursor_sharing='FORCE';
Session altered.
SQL> @q4
  COUNT(*)
----------
         0



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

113

SQL> host type q4.sql
select  count(*) from sh.products p,sh.sales s,sh.customers c where
  c.cust_id=s.cust_id and s.prod_id=p.prod_id and
  c.cust_first_name='Stelios' ;
SQL> select sql_id from v$sqlarea where sql_text like 'select  count(*) from sh.products  
p,sh.sales s,sh.customers c where%';
SQL_ID
-------------
7d16bm8ub2w1g
SQL> select sql_text from v$sqlarea where sql_id='7d16bm8ub2w1g';
SQL_TEXT
-----------------------------------------------------------
select  count(*) from sh.products p,sh.sales s,sh.customers c where   c.cust_id=s.cust_id and 
s.prod_id=p.prod_id and c.cust_first_name=:"SYS_B_0"
 
SQL> alter session set cursor_sharing='EXACT';
Session altered.
SQL> @q4
  COUNT(*)
----------
         0
SQL> select sql_id from v$sqlarea where sql_text like 'select  count(*) from sh.products  
p,sh.sales s,sh.customers c where%';
SQL_ID
-------------
7d16bm8ub2w1g
fqsukcqvrby36
SQL> select sql_text from v$sqlarea where sql_id='fqsukcqvrby36';
SQL_TEXT
-----------------------------------------------------------
select  count(*) from sh.products p,sh.sales s,sh.customers c where   c.cust_id=s.cust_id and 
s.prod_id=p.prod_id and c.cust_first_name='Stelios'

In the example above I changed the default value of cursor_sharing to FORCE. My SQL then changed so that 
it included a system defined bind variable called SYS_B_0. Then I set the value back to EXACT, and the bind value 
disappeared and was replaced by a literal. This is the expected behavior.

Bind Peeking
In 9i Oracle introduced bind peeking. Bind peeking is used to look at the value being used for a bind variable, during 
the hard parsing process, to determine an appropriate execution plan. A new possible value of SIMILAR for cursor_
sharing was also introduced. If it was appropriate, during parsing, a new plan was generated; otherwise (based on 
peeking) the plan was unchanged. The problem with this was that if the first execution plan resulted in a plan that was 
not good for the subsequent plans then you were stuck with a poorly executing plan.



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

114

Bind Sensitive and Bind Aware Cursors 
A new hybrid system was introduced by 11g called Adaptive Cursor Sharing (ACS), which is a little more subtle about 
when to introduce a new plan. The concepts of “bind sensitive” and “bind aware” were introduced. Bind sensitive 
is true when you have bind variables whose value may affect the execution plan. Bind sensitive means that the 
optimizer suspects that a new plan may be appropriate for some values, but it’s not sure. Think of bind sensitive as 
the first step in becoming aware that more execution plans are needed. You have to be sensitive to the bind variables 
before you become aware. If you run the SQL a number of times so that the number of buffer gets significantly 
changed for different bind variables, eventually the cursor will be marked “bind aware.” In other words, we went 
from bind sensitive (we have bind variables) to bind aware (these bind variables make a significant difference to the 
number of buffer gets). You can track the progress of the bind sensitivity and bind awareness values by looking at the 
SQLTXPLAIN report.

Setting Up a Bind Sensitive Cursor
To show the behavior of ACS will take a little setting up. In broad terms, here are the steps we’ll carry out in the 
example code. We’ll show the code for doing the following below:

1. Creating a test table

2. Inserting skewed data into the test table. There should be enough rows to allow the 
possibility of multiple execution plans.

3. Showing how skewed the data is

4. Creating indexes to allow them to be used in the execution plan

5. Gathering statistics including histograms on all columns

6. Selecting common and rare values in a number of executions until ACS is activated

7. Checking the results in SQLTXECUTE

-- Set up
drop table acs;
create table acs(object_id number, object_type varchar2(19));
insert into acs select object_id, object_type from dba_objects;
insert into acs select object_id, object_type from dba_objects;
select object_type, count(*) from acs group by object_type order by count(object_type);
create index i1 on acs(object_id);
create index i2 on acs(object_type);
exec dbms_stats.gather_table_stats('STELIOS','ACS', estimate_percent=>100,  
method_opt=>'FOR ALL COLUMNS SIZE 254');
prompt Now we have a table, ACS with skewed data.
-- Now let's do some selecting...
variable b varchar2(19);
@@acs_query 'SYNONYM'
@@acs_query 'TABLE'
@@acs_query 'SYNONYM'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

115

@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'
@@acs_query 'DIMENSION'

We’ve selected dba_objects yet again as a good source for psuedo-random data. In this case, we are interested in 
the fact that there are many more SYNONYM types in this table than there are DIMENSIONs. The script acs_query.sql 
contains the following:

exec :b := '&1'
select count(object_type) from acs where object_type=:b;

The output from this script looks like this:

SQL>@acs
 
Table dropped.
 
Table created.
 
73378 rows created.
 
73378 rows created.
 
OBJECT_TYPE           COUNT(*)
------------------- ----------
RULE                         2
LOB PARTITION                2
EDITION                      2
DESTINATION                  4
JAVA SOURCE                  4
SCHEDULE                     6
MATERIALIZED VIEW            6
SCHEDULER GROUP              8
DIMENSION                   10 <<<Count for DIMENSION
CONTEXT                     14
INDEXTYPE                   18
UNDEFINED                   18
WINDOW                      18
CLUSTER                     20
RESOURCE PLAN               20
JOB CLASS                   26
DIRECTORY                   28
JOB                         28
EVALUATION CONTEXT          30
PROGRAM                     38
RULE SET                    46
CONSUMER GROUP              50
QUEUE                       80
XML SCHEMA                 104
OPERATOR                   110



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

116

PROCEDURE                  320
LIBRARY                    366
TABLE PARTITION            478
TYPE BODY                  480
SEQUENCE                   484
FUNCTION                   604
JAVA DATA                  656
INDEX PARTITION            800
TRIGGER                   1234
JAVA RESOURCE             1668
LOB                       2032
PACKAGE BODY              2536
PACKAGE                   2658
TYPE                      5656
TABLE                     6192 <<<Count for Tables
INDEX                     8122
VIEW                     10340
JAVA CLASS               45834
SYNONYM                  55604 <<<Count for Synonyms
 
44 rows selected.
 
Index created.
 
Index created.
 
PL/SQL procedure successfully completed.
 
Now we have a table, ACS with skewed data.
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
             55604 <<<This is the count for SYNONYMS
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
              6192 <<<This is the count for TABLES
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
             55604
 



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

117

PL/SQL procedure successfully completed.

COUNT(OBJECT_TYPE)
------------------
                10 <<<Count for DIMENSION
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10

 PL/SQL procedure successfully completed.

COUNT(OBJECT_TYPE)
------------------
                10



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

118

Let’s summarize what happened. We created a test table, populated it with skewed data, selected a popular value, 
a moderately popular value, a popular value, and finally a rare value a number of times. We would expect the rare 
value would use an index range scan and the popular value would use a full table scan or fast full index scan. If we 
generate a SQLT XTRACT report (a SQLTXECUTE report would be just as good) we can now examine what happened.

Examining ACS with a SQLTXTRACT Report
ACS information is gathered for both SQLTXTRACT and for SQLTXECUTE reports. Both of these types of 
SQLTXPLAIN reports collect the bind variable information (if available) and show you the information in a clear 
report. Our example report happens to be a SQLTXTRACT report, but the navigation and examples work for both 
kinds of SQLTXPLAIN reports. First we can check to see if the right SQL was picked up: see Figure 7-2, which shows 
the SQL with a bind variable as expected.

Figure 7-3. Shows the Observations section (notice that two plans were found for an SQL)

Figure 7-2. Shows the SQL with the bind variable

If we follow the hyperlink from the top of the main SQLTXTRACT report to the Observations section, we can see 
that, there is an observation that there are multiple plans for the SQL statement. See Figure 7-3, which shows this:

If we now click on “Plans Summary” we end up at the Plans Summary section, which shows two exectution plans 
(as expected). One plan is almost instantaneous and the other takes 0.016 seconds in elapsed time. You can guess that 
the faster execution time is associated with the value of the predicate when it is set to DIMENSION (the rarer value). 
See Figure 7-4 for the details of the execution plans.



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

119

The figure above is the left hand side of the section for the Plans Summary. As expected, we see slower execution, 
more CPU usage and more buffer gets for the value Plan Hash Value 2348726875, because this is the plan associated 
with the predicate value SYNONYM. If we look at the right hand side of the same section we see more corroborating 
evidence (see Figure 7-5).

To confirm this click on the hyperlink of the plan hash value for the slower plan. This gets us to the details for this 
plan. See Figure 7-6.

Figure 7-4. Two execution plans, a fast and a slow one. One relates to DIMENSION and the other relates to SYNONYM 

Figure 7-5. The right hand side of the Plan Summary section shows a higher cost and higher estimated time in seconds 
for the second plan hash value



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

120

Figure 7-6. Here we see the execution plan, the peeked binds and the captured binds



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

121

As expected a slower execution resulted when the value SYNONYM was used. This was because there were 
55,604 values in the table that matched “SYNONYM”. A Fast Full Scan therefore seems appropriate. If we look at the 
execution plan for DIMENSION (which only matches 10 rows) we’d see a cost of only three and a plan based around 
and INDEX RANGE SCAN. See Figure 7-7, which shows this.

Figure 7-7. Shows the execution plan details for the plan associated with DIMENSION, a rare value



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

122

Now let’s go back to the top of the report and click on “Adaptive Cursor Sharing”. This brings us to the section 
shown in Figure 7-8.

Figure 7-8. Shows the section on adaptive cursor sharing



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

123

The section on Adaptive Cursor Sharing needs some explanation. The cursor list part of this section, shows all 
child cursors related to the SQL text. There is a child cursor 0 and 1. The child cursor (1) relates to the DIMENSION 
value (as this came after the SYNONYM value). We also see under the “Is Bind Sensitive” column that both child 
cursors are bind sensitive, and in this case (because we ran the statement relating to DIMENSION a few times), we 
also have an “Is Bind Aware” value of “Y” for the Child Cursor 1. A cursor is always bind sensitive when there is a 
bind variable with an associated histogram. If we look at the values of IS_BIND_SENSITIVE and IS_BIND_AWARE 
throughout this process we’ll see the following:

SQL> select IS_BIND_SENSITIVE S, IS_BIND_AWARE A from v$sqlarea where sql_id=' 5fvxn411s48p0';
 
S A
- -
Y N <<<AFTER FIRST EXECUTION (SYNONYM)
 
Y N <<<AFTER SECOND EXECUTION (TABLE)
 
Y N <<<AFTER THIRD EXECUTION (SYNONYM)
 
Y N <<<AFTER FOURTH EXECUTION (DIMENSION)
 
Y N <<<AFTER FIFTH EXECUTION (DIMENSION)
 
Y N <<<AFTER SIXTH EXECUTION (DIMENSION)
 
Y N <<<AFTER SEVENTH EXECUTION (DIMENSION)
Y Y
 
Y N <<<AFTER EIGHT EXECUTION (DIMENSION)
Y Y
 
Y N <<<AFTER NINTH EXECUTION (DIMENSION)
Y Y
 
Y N <<<AFTER TENTH EXECUTION (DIMENSION)
Y Y
 
Y N <<<AFTER ELEVENTH EXECUTION (DIMENSION)
Y Y
 
Y N <<<AFTER TWELFTH EXECUTION (DIMENSION)
Y Y

The Bind Sensitive column is always set to “yes” in this case, for all the children. But how does the second child 
get created and when? The algorithm is not published or documented, but the clue is under the histogram heading in 
the Adaptive Cursor Sharing section. Look at the Bucket ID column. There appear to be only three buckets, 0, 1, and 2. 
The annotation at the bottom mentions that a 0 bucket represents less than 1k. The 1 bucket represents greater than 
1k but less than 1M, and bucket 2 represents everything that is more than 1M. So for cursor 0 (remember this was  
the SYNONYM and TABLE values) there were a total of six executions, all of them with fewer than 1M buffer gets.  
For child number 1 the situation is different. Every one of its six executions had fewer than 1K in buffer gets. This is why 
after the seventh execution a new child is created that is bind aware. Some DBAs call this “warming the bucket.” The 
idea is there is no point in creating a new bucket (and the overhead that goes with that) if the predicate value is rarely 
going to be seen. We also judge if a predicate is the same as another child by this broad criteria. Once the cursor is 



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

124

bind aware it can be used for matching bind values that are peeked. In this simple example this would mean that two 
execution plans are possible and available based on the bind values.

This chapter covered what Adaptive Cursor Sharing is and how it works. The example shown is a simple one- 
dimensional example; there was only one column with skewed data. If you had a table with multiple columns of 
skewed data then you could potentially get different combinations of the columns, which would each generate their 
own child cursor. ACS allows for this by creating a range of selectivities for each column.

Does ACS Go Wrong?
As with all features that attempt to improve performance, there are rare cases where performance actually 
deteriorates. If you feel your execution plans are unstable, or the wrong plans have been chosen, you can always 
disable ACS by setting the following paramters (after first checking with Oracle Support):

SQL> alter system set "_optimizer_extended_cursor_sharing_rel"=NONE scope=both;
SQL> alter system set "_optimizer_extended_cursor_sharing"=none scope=both;

Now that we have disabled ACS what is the result or running acs.sql again?

SQL> @acs
Table dropped.
Table created.
73377 rows created.
73377 rows created.
OBJECT_TYPE           COUNT(*)
------------------- ----------
EDITION                      2
RULE                         2
LOB PARTITION                2
DESTINATION                  4
JAVA SOURCE                  4
SCHEDULE                     6
MATERIALIZED VIEW            6
SCHEDULER GROUP              8
DIMENSION                   10
CONTEXT                     14
INDEXTYPE                   18
UNDEFINED                   18
WINDOW                      18
RESOURCE PLAN               20
CLUSTER                     20
JOB CLASS                   26
JOB                         28
DIRECTORY                   28
EVALUATION CONTEXT          30
PROGRAM                     38
RULE SET                    46
CONSUMER GROUP              50
QUEUE                       80
XML SCHEMA                 104
OPERATOR                   110
PROCEDURE                  320



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

125

LIBRARY                    366
TABLE PARTITION            478
TYPE BODY                  480
SEQUENCE                   484
FUNCTION                   604
JAVA DATA                  656
INDEX PARTITION            800
TRIGGER                   1234
JAVA RESOURCE             1668
LOB                       2032
PACKAGE BODY              2536
PACKAGE                   2658
TYPE                      5648
TABLE                     6194
INDEX                     8126
VIEW                     10340
JAVA CLASS               45834
SYNONYM                  55604
 
44 rows selected.
 
Index created.
 
Index created.
 
PL/SQL procedure successfully completed.
 
Now we have a table, ACS with skewed data.
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
             55604
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
              6194
 
S A
- -
N N
 



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

126

PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
             55604
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

127

PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 
PL/SQL procedure successfully completed.
 
COUNT(OBJECT_TYPE)
------------------
                10
 
S A
- -
N N
 



CHAPTER 7 ■ ADAPTIVE CURSOR SHARING

128

Here we see that IS-BIND_SENSITIVE and IS_BIND_AWARE do not change throughout the exercise. No cursors 
were marked as bind sensitive or bind aware.

Summary
In this chapter, we covered the basic behavior of Adaptive Curosr Sharing. We also saw how it was an evolution of 
various features introduced over the years by Oracle. No doubt there will be further development in this area. With 
SQLTXPLAIN we can collect information on ACS and get enough information to decide if it is going to be helpful. In 
the next chapter we’ll cover another couple of features, Dynamic Sampling and Cardinality Feedback, which try to fix 
problems with execution plans as they occur.



129

CHAPTER 8

Dynamic Sampling  
and Cardinality Feedback

Imagine you’ve been given the job of sorting through some books in a house to find all the references to the word 
“Vienna” in the book titles. You’ve been told there are 2 or 3 books in the study, and that there is an index in the desk 
if you need it. Naturally with 2 or 3 books or even a dozen books, there’s no point in using the index in the desk, you’ll 
just look at the book titles one by one and quickly find all of the books with “Vienna” in the title. Unfortunately, what 
you didn’t know is that since the last person looked at the books the owner has bought the entire contents of the local 
public library, but you only discover this after you start. It’s going to be a long day if you stick to your plan.

In this chapter we’ll see how Oracle’s dynamic sampling (DS) and cardinality feedback (CFB) features could help 
our poor librarian. We’ll see that these features both work together at the beginning and at the end of the parsing 
process to get the right answer fast. We’ll learn that DS and CFB are not always used, and we’ll learn when those 
occasions arise. With this knowledge fresh in our minds we’ll also look at an example mystery case that we’ll follow 
through with SQLTXPLAIN. Who will be the villain and who will be the hero this time?

Dynamic Sampling?
The poor optimizer has to cope with occasionally coming across poor objects statistics (we covered that in Chapter 3),  
or completely missing statistics. Rather than just letting this situation occur and accepting that missing or poor 
statistics sometimes cause poor execution plans, Oracle developed dynamic sampling and cardinality feedback. Both 
of these great features work together to correct missing or poor statistics. SQLT reports when it detects that dynamic 
sampling is used as well as cardinality feedback. Let’s look at an example report. Figure 8-1 shows the top of the now 
familiar SQLTXPLAIN main report.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

130

From here if we click on “Execution Plans” we naturally end up at the section of the report showing all the known 
execution plans for our current SQL. If dynamic sampling was used we see a message in the report under “Plan Info”. 
See Figure 8-2 for an example report showing dynamic sampling being used. This figure only shows the left hand side 
of the page.

Figure 8-1. The top of the SQLTXPLAIN report

Figure 8-2. Both execution plans used dynamic sampling



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

131

What Is Dynamic Sampling?
So dynamic sampling was used, but what is it exactly? It is a way to improve the statistics of a query by collecting 
those statistics during the compilation process. Don’t assume from this that you can ignore the collection of statistics, 
however. You can’t. Dynamic sampling is not a substitute for good statistics. It’s a last attempt to avoid a bad execution 
plan. In the simplest terms the steps the optimizer goes through are shown below:

1. The optimizer starts parsing the query.

2. During the parsing process the optimizer assesses the state of the object statistics.

3. If the optimizer finds that some statistics are missing, it may do some dynamic sampling. 
The amount, and even whether dynamic sampling is done, will depend on the value of 
optimizer_dynamic_sampling.

4. If no dynamic sampling is to be done the rest of the optimization process continues, and 
statistics are used where available.

5. If dynamic sampling is to be done, the amount of sampling is determined from 
optimizer_dynamic_sampling, and a dynamic query is generated to gather the 
information.

6. If dynamic sampling was done then the statistics gathered are used to generate a better 
execution plan.

In Figure 8-2 we saw that dynamic sampling was used, but nowhere is there an indication of the value of the 
parameter. This can be seen in the CBO Environment part of the report. (See the section below “How to find  
the value of optimizer_dynamic_sampling.”) Remember, this all happens before the query executes and during the 
parsing process.

How to Control Dynamic Sampling
Dynamic sampling is controlled by the value of optimizer_dynamic_sampling as already mentioned. It can be set 
at the system level or at the session level or by using hints in the SQL. These different options allow the behavior of 
dynamic sampling to be very carefully controlled and be set to behave in different ways for different SQL (with hints) 
and different sessions (log on triggers for example). Here are examples of all of these options. (I’ve set the value to 4. 
You can set any value from 0 to 10.) First set it at the session level.

SQL> alter session set optimizer_dynamic_sampling=4 ;
Session altered.

You may want to set the parameter at the session level if you are testing some SQL and want to see the effect on 
the execution plan for a number of different values and you want to see it quickly without affecting anybody else. You 
can also set the value in the current instance without making the value permanent.

SQL> alter system set optimizer_dynamic_sampling=4 scope=memory;
System altered.

You might want to do this if you are testing at the system level and want to be sure it is the right choice across 
the system before making the change permanent. Once you’ve decided that setting this value at the system level is 
appropriate, you can set it as shown below.

SQL> alter system set optimizer_dynamic_sampling=4 scope=spfile;
System altered.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

132

Setting the value at the system level makes changes to the spfile so that it is applied to the database the next time it 
starts. If you want to make changes on a more granular level, perhaps individual SQLs you may want to use a hint. The hint 
version of this parameter can take two forms: a cursor level and a table level version. So, for example, to set for the cursor:
 
SQL> select /*+ dynamic_sampling (4) */ count(*) from dba_objects;
  COUNT(*)
----------
     73454
 

There is a different form of this hint that allows yout to set the sampling level on a table. This is getting very 
specific: and you have to wonder, if you know the object statistics on this particular object are missing, why haven’t 
you collected real statistics?
 
SQL> select /*+ dynamic_sampling (dba_objects 4) */ count(*) from dba_objects;
 
  COUNT(*)
----------
     73454
 

As I mentioned earlier, the amount of sampling and whether sampling is done depends on the value of the 
dynamic sampling parameter value. Most systems will have the default value of 2.
 
C:\Documents and Settings\Stelios>sqlplus / as sysdba
SQL*Plus: Release 11.2.0.1.0 Production on Sat Oct 13 11:47:40 2012
Copyright (c) 1982, 2010, Oracle.  All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> show parameter optimizer_dynamic_sampling
NAME                                 TYPE        VALUE
------------------------------------ ----------- ----------------------------
optimizer_dynamic_sampling           integer     2
 

If the default value is set and dynamic sampling is used, then the optimizer will attempt to sample 64 blocks of 
data, unless the query is parallelized (see section below, “Dynamic Sampling and Parallel Statements”). This is not 
a percentage of the table or index size, it is a fixed number of blocks. The number of rows sampled is dependent on 
how many rows fit into a block. Remember the objective of dynamic sampling is to get some very basic statistics at the 
last moment just before the query is executed. To minimize this overhead the sampling size is set in blocks to, a clearly 
defined value that cannot expand or contract with the size of the table rows. Dynamic sampling was designed this 
way to stop the parsing process from consuming too many resources on large tables. If the dynamic sampling process 
takes place (and we can check in the SQLTXPLAIN report) the samples collected may help to make the execution plan 
better than it would otherwise be. The values for the parameter (as mentioned earlier) vary from 0 to 10, and control 
the operation of dynamic sampling. If optimizer_dynamic_sampling is set to

0: No dynamic sampling is used under any circumstances.•

1: If there is at least 1 unanalyzed, unindexed, nonpartitioned table and this table is bigger •
than 32 blocks, then 32 blocks are sampled. This means that if the table is indexed or is 
partitioned or is smaller than 32 blocks no dynamic sampling will take place.

2: If at least one table has no statistics, whether it has been indexed or not, then 64 blocks are •
sampled. Partitioned and indexed tables are included in this. This will apply to all tables with 
no statistics unlike level 1, where some tables will be excluded.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

133

3: If at least one table has no statistics and if there is a • where clause with an expression,  
64 blocks are sampled. This is trying to fix the problem of expressions on where clauses where 
it can be tricky to develop the right execution plan. This is more restrictive than level 2. This 
still applies to all tables just like level 2.

4: If at least one table has no statistics and if an • OR or AND operator is used on predicates on 
the same table, then 64 blocks are sampled. This is attempting to deal with the problem of 
complex predicates. This is more restrictive than level 2. This level also applies to indexed and 
partitioned tables just like level 2.

For values between 5 and 8 the rules are unchanged from the value for optimizer_dynamic_sampling set to 4 
but the sample sizes increase, doubling each time so that for 5 the sample size is 128 blocks and for 8 the sample size 
is 1024.  For level 9, the sample size is 4086. For a value of 10 all blocks are sampled. As you can imagine, setting this 
value can be a very big overhead. If we generate the 10053 trace for a query against the sales table, we would type the 
following commands:
 
SQL> ALTER SESSION SET MAX_DUMP_FILE_SIZE = UNLIMITED;
SQL> ALTER SESSION SET TRACEFILE_IDENTIFIER = '10053_TRACE';
SQL> ALTER SESSION SET EVENTS '10053 TRACE NAME CONTEXT FOREVER, LEVEL 1';
SQL> select /*+ PARSE 5 / count(*) from sales;
SQL> exit
 

Here I set the dump file size (the trace file) to an unlimited size and appended a string to the automatically 
generated file name so I can easily find the file by setting the TRACEFILE_IDENTIFIER value to 10053_TRACE. The 
generated name for the trace file will be made up from the sid (in this case snc1), the string “ora”, a session  
number (5556 in this case), and then my appended string. Your file name will be different, but if you use a sensible 
TRACEFILE_IDENTIFIER value you should be able to find your trace file easily. If you wanted to see the overhead, you 
could look in the 10053 trace file for a query that was using dynamic sampling. If you search the 10053 trace file, you’ll 
see a section similar to the one below. (I’ve removed some of the text for clarity.)

Now if we look in the user_dump_dest location, we will find a file called snc1_ora_5556_10053_TRACE.trc.  
If we then search this file for the string “dynamic sampling”, we’ll see the section below.
 
*** 2012-12-01 12:59:17.671
** Performing dynamic sampling initial checks. **
** Dynamic sampling initial checks returning TRUE (level = 4).<<<Dynamic sampling value
*** 2012-12-01 12:59:18.078
** Generated dynamic sampling query: <<<A dynamic query is generated
    query text :
SELECT /* OPT_DYN_SAMP */ /*+ ALL_ROWS IGNORE_WHERE_CLAUSE NO_PARALLEL(SAMPLESUB) opt_
param('parallel_execution_enabled', 'false') NO_PARALLEL_INDEX(SAMPLESUB) NO_SQL_TUNE */ 
NVL(SUM(C1),0), NVL(SUM(C2),0) FROM (SELECT /*+ NO_PARALLEL("SALES") FULL("SALES") NO_PARALLEL_
INDEX("SALES") */ 1 AS C1, 1 AS C2 FROM "SALES" SAMPLE BLOCK (2.035048 , 1) SEED (1) "SALES") 
SAMPLESUB
 
*** 2012-12-01 12:59:18.093
** Executed dynamic sampling query:
    level : 4
    sample pct. : 2.035048 <<<2 percent of the table was sampled
    total partitions : 28 <<<There were 28 partitions in the table.
      partitions for sampling : 28
    actual sample size : 18860 <<<Sample size used
    filtered sample card. : 18860



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

134

    orig. card. : 145484 <<<Original estimate for cardinality
    block cnt. table stat. : 1769
    block cnt. for sampling: 1769
    max. sample block cnt. : 64
    sample block cnt. : 36
    min. sel. est. : -1.00000000
** Using dynamic sampling card. : 926759 <<<New estimated cardinality
** Dynamic sampling updated table card.
 

Let me step through what happens in this 10053 trace file. First we see that optimizer_dynamic_sampling is 
detected at level 4. Then a dynamic sampling query is generated. The query text is shown. There are a number  
of interesting options used for the hints in this query

• /* OPT_DYN_SAMP */ - This is not a hint it is just a comment.

• /*+ ALL_ROWS – The ALL_ROWS hint, a standard hint.

• IGNORE_WHERE_CLAUSE – This ignores any WHERE clauses.

• NO_PARALLEL(SAMPLESUB) – No parallel execution, the overhead from this dynamic query must 
not be allowed to take too many resources.

• opt_param('parallel_execution_enabled','false') – No parallel execution.

• NO_PARALLEL_INDEX – No parallel Index plans.

• NO_SQL_TUNE */ - Undocumented hint.

Then the dynamic sampling query is executed and from the value 4 of the parameter we were able to sample 
approximately 2 percent of the rows. You can see in the query that the blocks sampled are randomized (SEED (1) and 
that we are using the SAMPLE clause, which samples blocks from a table. So did the dynamic sampling query do any 
good? The original estimate for the cardinality was 145,484. After the dynamic sampling query is executed the new 
estimate is 926,759. This is much closer to the actual value of 918,843. The value of the controlling parameter is pretty 
important; so next we’ll see how to find out its value.

How to Find the Value of optimizer_dynamic_sampling
We can see the actual value used for optimizer_dynamic_sampling by looking at the “CBO Environment” section of 
the SQLT report. The hyperlink is shown in Figure 8-3 below.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

135

Once we’ve clicked on this we see the “CBO Environment” part of the report, which shows, amongst other things, 
the value of optimizer_dynamic_sampling. See Figure 8-4.

Figure 8-3. The hyperlink that takes you to the non-default CBO parameters 



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

136

Figure 8-4 also shows us that the value optimizer_dynamic_sampling was changed by an alter system 
statement. We can see this because under the “Is Modified” column we see SYSTEM_MOD. We can also find out what 
the value is by looking at the 10053 trace of a SQL statement (as we did above) or we can show the value
 
SQL> show parameter optimizer_dynamic_sampling
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- --------------
optimizer_dynamic_sampling           integer     4

Dynamic Sampling and Parallel Statements
The rules for deciding if dynamic sampling should be used for parallel execution plans are slightly different than for 
serially executed statements. Parallel statements are already expected to be resource intensive so the small overhead 
in dynamic sampling is worth it to ensure a good execution plan. The logic is that if the value is set to the default 
(optimizer_dynamic_sampling=2) then the 64 block sample size is ignored and the actual sample size is determined 
by looking at the table sizes and the predicate complexity. If there is a non-default value then the rules are applied as 
for serially executing statements.

What Dynamic Sampling Value Should I Set?
The general rule of thumb for dynamic sampling is that first of all you should not rely on this feature. Remember 
dynamic sampling is there to catch potential problems in the optimization process caused by missing statistics.  

Figure 8-4. The value of optimizer_dynamic_sampling set to the non-default value of 5



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

137

If your query is not performing as expected, dynamic sampling should not be your first port of call. You should get a 
SQLTXPLAIN report and look at that first. For parallel statements, especially if you have complex predicates and at 
least one table with missing statistics, you may well end up using dynamic sampling.

If you see dynamic sampling being used (as shown earlier in Figure 8-2) then you should check to see why it was 
used and what you can do to avoid using it. If you have statistics on a table and still see dynamic sampling, then one 
possibility is that you have complex predicates and have not used extended statistics (mentioned in Chapter 3).

If for some reason you want to use dynamic sampling but find its sampling level too low or the expected plan is 
not produced, you can increase the sampling level by changing the value of optimizer_dynamic_sampling, but take 
care to test these changes on a test system and make small changes to see that the overhead is not too great. Pick a 
representative SQL and see how it performs with different values. If you have done no testing on this parameter, then 
keep the value at its default.

If you want to disable this feature completely then set the value to 0.
There are cases where dynamic sampling is the only option left. For example, tables that are populated during the 

query will not have good statistics (as they are most likely empty during the maintenance window when statistics are 
gathered). Global temporary tables are a good example where dynamic sampling is a good idea.

If dynamic sampling is your last chance to get your execution plan right, then cardinality feedback is your chance 
to get the execution plan right the second time around.

Cardinality Feedback
Cardinality feedback is a simple yet elegant way of correcting cardinality. Rather than going to endless complications 
to determine the right cardinality, we just wait for the result of each step in the execution plan, store it in the shared 
pool and reference it on subsequent executions, in the hope that the information will give us a good idea of how well 
we did the last time. This simple technique naturally has its own pitfalls, how do we stop results bouncing from one 
estimate to another for example? Let’s look at some of the details.

How Does Cardinalty Feedback Work?
Cardinality feedback could not work if information about every SQL was not stored in memory, to be accessed by later 
executions of the same SQL. Let’s see what information we can access. We’ll run a simple query, then get the Actual 
and Estimated cardinalities for the execution and then run for two queries and compare estimates and actual rows 
returned, with both dynamic sampling and cardinality feedback disabled. Then we’ll enable cardinality feedback and 
repeat the experiment. In our first step we check the value of optimizer_dynamic_sampling and see that it is set to 0, 
which means this feature is disabled.
 
SQL> show parameter optimizer_dynamic_sampling
NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------
optimizer_dynamic_sampling           integer     0 <<<DS disabled
SQL> alter system set "_optimizer_use_feedback"=FALSE; <<CFB disabled
System altered.

Note ■  We could also have disabled cardinality feedback with a hint /*+ opt_param('_optimizer_use_feedback' 

'false') */.

Next we create a test table that is populated from dba_objects. We use the hint /*+ gather_plan_statistics */ to 
ensure we have good statistics for the execution plan we want to look at.
 



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

138

SQL> create table test1 as select (object_id) from dba_objects;
Table created.
SQL> select /*+ gather_plan_statistics */ count(*) from test1;
  COUNT(*)
----------
     73532
 

Now we use the dbms_xplan.display_cursor to get the execution plan and the statistics associated with the 
execution. This is a pretty nice feature introduced in 11g of Oracle.
 
SQL> select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
PLAN_TABLE_OUTPUT
SQL_ID  gtukt6kw8yjm6, child number 0
-------------------------------------
select /*+ gather_plan_statistics */ count(*) from test1
Plan hash value: 3896847026
-----------------------------------------------------------------------------------------------
| Id  | Operation          | Name  | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |
-----------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |       |      1 |        |      1 |00:00:00.09 |     116 |    112 |
|   1 |  SORT AGGREGATE    |       |      1 |      1 |      1 |00:00:00.09 |     116 |    112 |
|   2 |   TABLE ACCESS FULL| TEST1 |      1 |   9965 |  73532 |00:00:00.18 |     116 |    112 |
-----------------------------------------------------------------------------------------------
14 rows selected.
 

We see on this line that the estimate (E-Rows) is pretty poor compared to the actual number of rows (A-Rows). 
This estimate counts as bad enough to merit cardinality feedback use, but in this case we have the feature turned off. 
So if we run the query a second time we would expect no improvement in E-Rows; and indeed this is what happens.
 
SQL> select /*+ gather_plan_statistics */  count(*) from test1;
  COUNT(*)
----------
     73532
SQL> select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
PLAN_TABLE_OUTPUT
SQL_ID  gtukt6kw8yjm6, child number 0
-------------------------------------
select /*+ gather_plan_statistics */ count(*) from test1
Plan hash value: 3896847026
-----------------------------------------------------------------------------------------------
| Id  | Operation          | Name  | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |
-----------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |       |      1 |        |      1 |00:00:00.09 |     116 |    112 |
|   1 |  SORT AGGREGATE    |       |      1 |      1 |      1 |00:00:00.09 |     116 |    112 |
|   2 |   TABLE ACCESS FULL| TEST1 |      1 |   9965 |  73532 |00:00:00.18 |     116 |    112 |
-----------------------------------------------------------------------------------------------
14 rows selected.
 

No improvement has occurred in the estimated cardinality (E-Rows) for this plan. The E-Rows value has not 
changed; the optimizer did not make any changes even though its estimate was so far out. The next step in our 
experiment is to enable cardinality feedback.
 



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

139

SQL> alter system set "_optimizer_use_feedback"=TRUE;
System altered.
 

Now we repeat the entire sequence of steps and we find that for the last step we get
 
SQL> select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
PLAN_TABLE_OUTPUT
SQL_ID  gtukt6kw8yjm6, child number 3
-------------------------------------
select /*+ gather_plan_statistics */ count(*) from test1
Plan hash value: 3896847026
--------------------------------------------------------------------------------------
| Id  | Operation          | Name  | Starts | E-Rows | A-Rows |   A-Time   | Buffers |
--------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |       |      1 |        |      1 |00:00:00.02 |     116 |
|   1 |  SORT AGGREGATE    |       |      1 |      1 |      1 |00:00:00.02 |     116 |
|   2 |   TABLE ACCESS FULL| TEST1 |      1 |  73532 |  73532 |00:00:00.18 |     116 |
--------------------------------------------------------------------------------------
Note
-----
cardinality feedback used for this statement
 

We see that in the Note section the optimizer has left us a message indicating that cardinality feedback was used. 
In our example above we had an estimated 9,965 rows to begin with and an actual number of 73,532 rows. Without 
cardinality feedback and dynamic sampling or statistics on the new object our estimate is pretty poor to begin 
with. Because the number of estimated rows was “significantly” different, cardinality feedback was used. It is not 
documented what a “significant” difference is, but approximately 8-fold difference is enough.

There are safety features in place to stop the cardinalities bouncing back and forth between estimates, so after 
a small number of iterations the plan is stabilized. The fact that the actual cardinalities are stored in the SGA also 
explains why cardinality feedback information is not persistent, that is if the instance is restarted then the cardinality 
feedback information will be lost, as the information held in memory is not persistent.

How Can You Tell If Cardinality Feedback Is Used?
The simplest way to tell if cardinality feedback has been used is to use the SQLTXPLAIN report. Click on “Execution 
Plans” (as shown in Figure 8-1) and if cardinality feedback has been used for some of your execution plans you will 
see “cardinality_feedback yes” under the “Plan Info” column. See figure Figure 8-5 for an example.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

140

To emphasize the point that cardinality feedback is a backup mechanism, its use is also highlighted in the 
“Observations” section of the SQLTXPLAIN report. See section in Figure 8-6, which you can reach by clicking on the 
“Observations” hyperlink from the top of the main SQLTXPLAIN report.

Figure 8-5. “Execution Plans” section shows that cardinality feedback was used for an execution plan

Figure 8-6. Cardinality feedback usage is shown as an observation of type PLAN_CONTROL



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

141

When is Cardinality Feedback used?
Lack of statistics or “complex” predicates that create queries with hard-to-determine cardinalities will give cardinality 
feedback a chance to improve E-Rows. Here is a SQL with a “complex” predicate:

SQL> select product_name from order_items ord, product_information pro
  where ord.unit_price= 15 and quantity > 1
  and pro.product_id = ord.product_id;

Here we have a filter on unit_price (must be equal to 15 and quantity must be > 1).  This situation is not very 
rare so cardinality feedback could be used often. However, remember that we mentioned that the statement needs to 
execute at least once for the optimizer to store the actual rows so that it can compare them to the estimated number 
of rows. If dynamic sampling has already been used (because it was needed and it was not disabled), then cardinality 
feedback will not be used. Also because of the problems that can be introduced by bind variables (especially if you 
have skewed data), cardinality feedback will not be used for parts of the statement that involve bind variables.

If you find cardinality feedback is not useful for your site or SQL statement you can, with the assistance of 
support, disable it with

SQL> alter system set "_optimizer_use_feedback" = FALSE;

If you want to disable an individual statement, then you can put this hint in the SQL

/*+ opt_param('_optimizer_use_feedback' 'false') */

A select sysdate from dual becomes

SQL> select /*+ opt_param('_optimizer_use_feedback' 'false') */ sysdate from dual;

Cardinality feedback is not persistent through instance restarts, so it is better to get your statistics from other 
sources, preferably from dbms_stats, but remember that cardinality feedback is enabled by default.

How Do Cardinality Feedback and Dynamic Sampling Work Together?
I’m sure you can imagine that with dynamic sampling and cardinality feedback both working on the same statement, 
there could be conflicts, and the amount of overhead could be doubled. There are no controls on cardinality feedback 
(except to disable it), unlike dynamic sampling, which can be set for different criteria and different levels of sample 
collection. Oracle has thought about these potential conflicts and overheads by having built-in safeties. For example, 
if dynamic sampling is used, cardinality feedback will not be used. Dynamic sampling can be used more than once for 
an individual statement, whereas collection of information for an individual SQL statement by cardinality feedback is 
only allowed to run a limited number of times. The safeties are there to catch problems, but the care has been taken to 
ensure the safeties are not too much of an overhead.

Now that we’ve got some understanding about these two features let’s see an example mystery case involving 
both of these features.

The Case of the Identical Twins
This is the kind of situation that occurs frequently in the DBA world: two apparently identical systems, one cloned 
from the other but with widely different performance in some SQL. Naturally you can suspect different DDL, statistics, 
or operational procedures, different resource allocation, different workloads, etc. When the hardware is identical and 
the databases are cloned from each other, the number of choices becomes more limited. In this case we discover by 



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

142

experimentation that one particular SQL is behaving well on system A (say, New York) and the cloned system B (say, 
London) is behaving badly. The SQL is the same, the systems are the same, the parameter settings are the same. Let 
me show you the steps you could follow to solve a problem like this using SQLT.

There are many ways you could solve this problem. No doubt you could do it just by collecting 10046 trace files, 
but we’re looking at how you would do this with SQLTXPLAIN. Step by step. First, if we collect SQLT for both SQL 
statements, one SQLT XECUTE report for New York (as it executes normally) and one SQLT XTRACT report for the evil 
twin in London (as it takes too long to execute).  From the top of SQLTXPLAIN report (see Figure 8-7) we look at the 
list of execution plans by clicking on “Execution Plans”.

Figure 8-7. The top of the SQLT report. We click on “Execution Plans” 

This is for the evil system. We see that cardinality feedback is in play, so something must have happened to make 
this feature kick in. We also see (Figure 8-8) that the estimated cardinality is very different for some of the executions 
(where cardinality feedback was used). We also see that the optimizer_cost is very high where cardinality feedback 
was used.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

143

Since we are comparing the good and bad systems, we should now look at the execution plans for the good 
system in New York. Remember these two systems are identical (same hardware, same database versions, similar 
volumes of data, same tables, and indexes). Here is the same part of the report for the good system (see Figure 8-9)

Figure 8-8. The London evil twin shows cardinality feedback being used and high values for estimated cardinality

Figure 8-9. The New York good twin shows dynamic sampling and smaller values for estimated cardinality

We also see that there are many more different plans in London than there are in New York. We know that 
dynamic sampling and cardinality feedback are sometimes used when poor statistics are involved, so it is a 
reasonable route of inquiry to look at the statistics of the main objects in the query. We should be thinking throughout 
our investigation of the information presented by SQLT: “Why was dynamic sampling used and why was cardinality 
feedback used and why are they different?” From the top of the report we click on “Statistics”. We see for the good 
system (Figure 8-10) that we have a “Y” under the “Temp” column. Also we have no values under “Num Rows” or 
“Sample Size” or “Perc”. TABLE4 is of interest because as we’ll see the same part of the report for the bad system is very 
different in this respect.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

144

Before we leap to conclusions (and this is always to be avoided in investigating performance issues), we need 
to look at the bad system and do a comparison (see Figure 8-11). Our plan is to figure out what could be different 
between these two systems to cause one to use dynamic sampling and the other to use cardinality feedback.

Figure 8-10. The table statistics for the good system

Figure 8-11. The table statistics for the bad system 

Now that we see both together we see something very interesting. Both databases show that TABLE4 is a 
temporary table and that the statistics gathering is different for these two systems for this one table. We also see that 
the data volume for TABLE1 is different, but TABLE4 seems much more interesting in terms of difference, at least for 
now because it has a count of 0 and row count of 0 also. We’ll keep the TABLE1 idea as a backup. So let’s check on the 
metadata for TABLE4 and see how it was defined. (We can get this easily enough by clicking on the “Metadata” from 
the top of the report. See Figure 8-12.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

145

Then from the part of the report labeled “Metadata” we can select the table metadata by clicking on “Table” 
hyperlink, which is shown in the Figure 8-13. Notice how we also have a link to index metadata if we wanted to 
investigate that.

Figure 8-12. From the top of the SQLTXECUTE report we can navigate to the metadata for all objects for this query

Figure 8-13. The list of object types for which we have metadata, in this case tables and indexes

The table metadata part of the SQLTXPLAIN report show links to all the tables, which are in the query for which 
the report was created. See in Figure 8-14. In this case we have four tables. We are interested in the fourth table in this 
case, so we click on the “TABLE4” hyperlink.



CHAPTER 8 ■ DYNAMIC SAMPLING AND CARDINALITY FEEDBACK 

146

This gets us to the part of the report which shows the metadata for TABLE4. We see that is is global temporary 
table with the clause ON COMMIT PRESERVE ROWS. This is the DDL we see: 
 
  CREATE GLOBAL TEMPORARY TABLE "SCHEMA1"."TABLE4"
   (   "COLUMN1" NUMBER(10,0),
       "COLUMN2" NUMBER(10,0),
       "COLUMN3" NUMBER(10,0)
   ) ON COMMIT PRESERVE ROWS
 

There’s nothing remarkable about this table. This is a default creation of a global temporary table that can be 
used by more than one session during SQL processing. This is often included in application designs if the developer 
wants to keep some temporary data in a table for processing in later steps in the application. The on commit preserve 
part of the DDL (metadata) ensures that data committed to the table is preserved. In this kind of table you would 
normally expect the table to be cleaned out at the end of processing, or sometimes at the beginning of processing. 
The key thing to note here is that on the bad system, statistics were collected for this table (see Figure 8-11). There is 
a last analyzed date for TABLE4 but not on the good system. If we look at the statistics for TABLE4 where they were 
collected we see that the table was empty. These statistics would then prevent dynamic sampling from being activated 
(as there are “good” statistics for TABLE4), but would not prevent cardinality feedback because data loaded during 
processing would make the cardinality estimates wrong. This sounds like a working theory. Somehow TABLE4 has 
had statistics collected on it on the bad system but not on the good system. On the good system the table was not 
analyzed. This would have allowed dynamic sampling to take an estimate of the statistics at run time and determine a 
good execution plan. With a working theory we can now build a test case (described in Chapter 13) and attempt to get 
the good execution plan from the bad test case by deleting the statistics for the global temporary table.

Summary
Dynamic sampling and cardinality feedback are useful features, for those rare occasions when statistics are missing. 
There is no substitute for good statistics, however. With the interplay of complex features situations can be created 
that show strange behavior. Even seemingly identical systems can behave very differently if key components are 
changed, sometimes unwittingly. SQLTXPLAIN, because it gathers everything, is the quickest and easiest way to solve 
most SQL tuning mysteries. In the next chapter we’ll take a closer look at the special Data Guard physical standby 
environment and how SQLT can help.

Figure 8-14. The list of table objects for which we have metadata

a



147

CHAPTER 9

Using SQLTXPLAIN with Data Guard 
Physical Standby Databases

SQLTXPLAIN is a great tool designed to help with SQL tuning problems, but its effectiveness is limited when the 
database is a read-only Data Guard physical standby database. Read only databases like a Data Guard physical 
standby databases cannot be written to by utilities such as SQLTXPLAIN. In this chapter we explore the special tools 
created just to deal with Data Guard.

Data Guard Physical Standby Database
Data Guard is a piece of technology, developed by Oracle in response to a “what if” scenario. What if my data center 
is completely wiped out by flooding? What if a fire destroys the building my database is housed in? Traditionally 
this has been answered by timely backups, shipped off site and stored in a secure location that can then be accessed 
within an agreed time scale and restored to backup hardware made available at another site (presumably a site not 
in the disaster zone). This strategy had many difficulties: taking the backup, shipping the backup to a safe location, 
getting the right backup from the secure location, recreating your systems with the use of the backup and your 
restore procedures, and finally getting access to those systems for the staff required to use them. Finally and most 
importantly, you need to test these procedures on a regular basis, otherwise come the day of the disaster you may 
have all the data and equipment, but you’ll have no idea how to put it all together to make a working system. Of 
course, this restore procedure can take a considerable amount of time. You have tested your recovery procedure 
haven’t you? One site I worked with took this so seriously that on the day of the test, they would go around and put red 
stickers on people and equipment and tell the people they were not available for this test (presumably they had been 
abducted by the aliens in the “Aliens abduct your data center” scenario). It was hard to test these scenarios; and not 
surprisingly, many sites did not do adequate testing and crossed their IT fingers and hoped for the best.

Data Guard makes preserving your data site much simpler. All of the aforementioned complications can 
potentially be eliminated. The technology that makes Data Guard physical standby work is in concept very simple. 
The archive logs (or redo logs), that track every change in your database are transferred by special processes on your 
source system to special processes on the standby system, where the changes are applied, block by block to a copy 
of your source database. This process called propagation can apply data on the standby database. The data can be 
applied in lock step with the primary database or it can lag behind the primary database by a preset amount. You 
can even have multiple standby databases all collecting changes from the primary database. With Data Guard active 
standby, you can even allow the failover (the process whereby the primary fails and the standby has to take over) to 
happen with the minimum of fuss.

Data Guard is a huge leap forward in disaster-recovery technology. Complete coverage goes well beyond the 
scope of this book; but a basic, high-level understanding of the tool is useful.



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

148

Note ■  I could not hope to cover any more than the briefest details of Data Guard here. It is a book- length topic by 

itself. The latest book is entitled Oracle Data Guard 11g Handbook by Larry Carpenter, et. al. (Oracle Press 2009).

Suffice it to say that Oracle Data Guard Physical Standby allows the data center to be online all of the time. There 
is no down time. Naturally you still need backups for those pesky systematic errors (you deleted the wrong data).   
Data Guard makes your testing scenario much simpler. Now you need only carry out a switchover (a controlled switch 
of the computer roles as opposed to the failover), and once the switchover is complete you can start your testing 
immediately.

In 11g release 1, Oracle changed Data Guard so that not only was the physical standby ready for a failover or 
switchover operation, it was also available for read-only operations. Typically this would be to allow reports to run on 
the standby database. Many sites found that this was a massive boon to their operations. Now they could move their 
expensive reporting operations (in terms of resource usage) to the standby database and free up the primary for  
On-Line Transaction Processing (OLTP).

SQLTXTRSBY
Once reporting operations moved to the physical standby (and logical standby) we could once more have poorly 
performing SQL. Performance problems that are on a read/write database are the sort of thing that SQLT can help us 
with. The only problem being that SQLTXTRACT and SQLTXECUTE need read/write access to the database (to store 
data in the SQLT repository and to install packages and procedures). How is it possible for SQLT to help us if we can’t 
even store data about the performance on the database with the performance problem? This is where SQLTXTRSBY 
comes into play.

It provides some special procedures that deal with these special circumstances. As Data Guard (and other  
read-only databases) became more popular more of the performance problems mentioned above appeared on Data 
Guard instances. To deal with these problems SQLTXTRACT was adapted to work without any local storage. This was 
done by making special routines that ran from a read/write database and reached out across a database link to the 
read-only database, collected the required information and collated it and presented it on the read-write database. 
Let’s take a more detailed look at some of SQLTXTRACT’s limitations and then discuss using SQLTXTRSBY.

SQLTXTRACT Limitations
I always think of SQLTXTRACT (alias XTRACT) and SQLTXTRSBY (alias XTRSBY) as a superhero and his (or her) 
sidekick. XTRACT the superhero can seemingly do it all, but every superhero has their Achilles heel, in this case it is 
the inability to work on a read-only database. XTRSBY has those special skills that the main hero does not have. In this 
case XTRSBY can go into a read-only Data Guard system and get out with the information, where XTRACT cannot. 
Physical standbys cannot tolerate write operations. There cannot be two systems potentially updating the same data 
(unless you have multi-master replication of course, but that’s a whole other book), not unless there was some way 
for the primary to know what the failover system was doing, and Data Guard does not allow for that. This is why the 
physical standby database is open in read-only mode. If you do happen to wander onto a read-only database and try 
and insert some data you’ll get an error message like this:

SQL> insert into test1 values (1);
insert into test1 values (1)
            *
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-16000: database open for read-only access



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

149

What we see in the above example is that inserting data into a read-only database is not possible. The error 
message is even somewhat descriptive of what happened. XTRACT needs to keep some data in the database to do its 
analysis, so this step (saving the data in the local database) will not work for XTRACT. XTRSBY solves this problem  
by pulling the required data across a database link to a read/write database and stores it locally rather than on the 
read-only database.

XTRACT also relies on creating a user so that it can store its objects safely. XTRACT cannot do that on a read-only 
database.

SQL> connect / as sysdba
Connected.
SQL> create user sqltxplain_read_only identified by orcle;
create user sqltxplain_read_only identified by orcle
            *
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-16000: database open for read-only access

Even a simple procedure to collect trace cannot be done: 

SQL> CREATE OR REPLACE PROCEDURE set_trace
       /* grant alter session to <user> */
       /* create this procedure on both sites */
       as
         c1  integer;
         r1 integer;
         c2  integer;
         r2 integer;
         BEGIN
           c1:=dbms_sql.open_cursor;
          dbms_sql.parse(c1,
            'alter session set events
            ''10046 trace name context forever, level 8''',dbms_sql.v7);
            r1:=dbms_sql.execute(c1);
            dbms_sql.close_cursor(c1);
            c2:=dbms_sql.open_cursor;
            dbms_sql.parse(c2,
              'alter session set events
              ''10053 trace name context forever, level 1''', dbms_sql.v7);
            r2:=dbms_sql.execute(c2);
            dbms_sql.close_cursor(c2);
          END;
    /
CREATE OR REPLACE PROCEDURE set_trace
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-16000: database open for read-only access

Clearly this is not going to be allowed. So if we can’t create the SQLTXPLAIN schema, or any procedures, how do 
we use  XTRACT against this database? XTRSBY solves this problem by using local users (on a read/write database) 
and creating procedures that use database links to the read-only database.



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

150

How Do We Use XTRSBY? 
We’ve just seen some of the things that cannot happen on a Data Guard Physical standby database. This is when 
XTRSBY can step forward and do most of what XTRACT can do. I say “most” because XTRSBY is not exactly the same 
as XTRACT in terms of the results (we’ll see the differences in the “What does an XTRSBY report look like?”) There’s 
enough in the report, however, to help tune queries on the Data Guard instance. So how do we get XTRSBY to work on 
a Data Guard database?  The brief steps in getting XTRSBY to work on a Data Guard standby database are as follows:

1. Install SQLTXPLAIN on the primary (we already covered this in Chapter 1 of this book).

2. Allow the DDL to be propagated to the standby database.

3. Create a database link accessible to the SQLTXPLAIN schema linking to the standby 
database. I’ll give an example below.

4. Run XTRSBY from the primary specifying the SQL ID of the SQL on the standby and the 
database link.

5. The report is produced on the primary.

Step 1, above is covered in Chapter 1. Step 2 is a matter of waiting for the schema to be propagated (or copied  
as part of the normal Data Guard operations) to the standby. Step 3 is merely creating a public database link (or 
link available from SQLTXPLAIN): These are the commands I typed on my read-write database to create a publicly 
available database link that connects to the read-only database.

SQL> show user
USER is "SYS"
SQL> create public database link "TO_STANDBY" connect to sqltxplain identified by oracle using  
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(Port=1521))(connect_data=(SID=SNC2)))';
 
Database link created.
 
SQL> select sysdate from dual@to_standby;
 
SYSDATE
---------
28-OCT-12

Here I have simulated the standby database with a read-only database, hence in my connect string for the public 
database link I have used localhost. In a real world example you would use the hostname of the standby database. 
Also in my example I have used a PUBLIC database link, but you may have standards on your site for creating database 
links, which require you to create a private link or a two-part link where the link information and the password are 
specified separately. As long as SQLTXPLAIN has access to the link to find the standby database the routine  
xtrsby.sql should work. Once these pre-requisites are in place we can use XTRSBY to collect information about  
a standby SQL, by running sqlxtrsby on the primary.

First let’s create some SQL on the standby. This would be equivalent to the reports that are run on the standby 
database.

SQL> select count(1) from dba_objects where object_type ='DIMENSION';
 
  COUNT(1)
----------
         5
 



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

151

SQL> select sql_id from v$sql where sql_text like 'select count(1) from dba_objects where  
object_type =''DIMENSION''';

SQL_ID
-------------
gaz0dgkpffqrr

SQL>

In the steps above we ran some arbitrary SQL and got the SQL ID for that SQL. Remember we ran the SQL on  
the standby database (where our reports might have run). We can’t store any data on the Data Guard Physical  
Standby database so now we have to capture information about the SQL from across the database link from the 
primary database:

SQL> @sqltxtrsby gaz0dgkpffqrr to_standby

PL/SQL procedure successfully completed.

Parameter 1:
SQL_ID or HASH_VALUE of the SQL to be extracted (required)
  
Parameter 2:
DBLINK to SQLTXPLAIN in the stand-by database (required)
  
Paremeter 3:
SQLTXPLAIN password (required)

Enter value for 3:

At this point enter the password for SQLTXPLAIN

. . . please wait . . .

This is the output, shortened for brevity:

Archive:  sqlt_s96365_xtrsby_gaz0dgkpffqrr.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     3060  10/30/2012 13:00   sqlt_s96365_driver.zip
     1159  10/30/2012 13:00   sqlt_s96365_export_driver.sql
    46903  10/30/2012 13:00   sqlt_s96365_lite.html
    12448  10/30/2012 13:00   sqlt_s96365_log.zip
  1788199  10/30/2012 13:00   sqlt_s96365_main.html
    15498  10/30/2012 13:00   sqlt_s96365_readme.html
      222  10/30/2012 13:00   sqlt_s96365_remote_driver.sql
   217088  10/30/2012 13:00   sqlt_s96365_tc.zip
      193  10/30/2012 13:00   sqlt_s96365_tcb_driver.sql
      172  10/30/2012 13:00   sqlt_s96365_tc_script.sql
       65  10/30/2012 13:00   sqlt_s96365_tc_sql.sql
  3183654  10/30/2012 13:00   sqlt_s96365_trc.zip
---------                     -------
  5268661                     12 files



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

152

File sqlt_s96365_xtrsby_gaz0dgkpffqrr.zip for gaz0dgkpffqrr has been created.
 
SQLTXTRSBY completed.

This produces the zip file in the directory where the SQLTXPLAIN routine was run. If we expand the zip file, we’ll 
see the following: 

10/31/2012  12:03 PM    <DIR>          .
10/31/2012  12:03 PM    <DIR>          ..
10/30/2012  01:00 PM             3,060 sqlt_s96365_driver.zip
10/30/2012  01:00 PM             1,159 sqlt_s96365_export_driver.sql
10/30/2012  01:00 PM            46,903 sqlt_s96365_lite.html
10/30/2012  01:00 PM            12,448 sqlt_s96365_log.zip
10/30/2012  01:00 PM         1,788,199 sqlt_s96365_main.html
10/30/2012  01:00 PM            15,498 sqlt_s96365_readme.html
10/30/2012  01:00 PM               222 sqlt_s96365_remote_driver.sql
10/30/2012  01:00 PM           217,088 sqlt_s96365_tc.zip
10/30/2012  01:00 PM               193 sqlt_s96365_tcb_driver.sql
10/30/2012  01:00 PM               172 sqlt_s96365_tc_script.sql
10/30/2012  01:00 PM                65 sqlt_s96365_tc_sql.sql
10/30/2012  01:00 PM         3,183,654 sqlt_s96365_trc.zip
              12 File(s)      5,268,661 bytes
               2 Dir(s)   7,211,745,280 bytes free

We’ll see the main sqlt_s96365_main.html file, but fewer files than for a “normal” sqltxtract run: no 10053 
trace file, no sql profile script and no SQL Tuning Advisor reports. This is because the read-only status of the standby 
restricts what can be done. Production of the XTRSBY report, as you can see, is only a little more complicated to 
produce. The additional steps already described are that one additional link is required, and the link name needs to 
be passed in the call to the routine. These are all that is required to get XTRSBY working.

What Does a XTRSBY Report Look Like?
Now that you have a report, what can we do with it? Let’s look at the top of another example report. See Figure 9-1.



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

153

Figure 9-1. The top of a SQLT XTRSBY report. Some features are not available 

Some features are not available. For example, in Figure 9-1 I’ve highlighted two sections that do not have links, as 
they are not available in XTRSBY. This is because routines on the standby cannot be run (we saw earlier in the chapter 
what happens). What about the execution plans? They are visible as usual. You’ll see in Figure 9-2 that there is no real 
difference in the information collected.



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

154

In Figure 9-2 we see that all the usual features described in Chapter 2 and 3 are present and can be interpreted 
in the same way. In this new example (created on a different machine) the link name, still called TO_STANDBY, is 
shown in the execution plan. We also see that under the “Environment” heading (which we can reach by clicking on 
“Environment” from the top of the report), we see that the standby database link is shown. See Figure 9-3.

Figure 9-2. An execution plan collected by XTRSBY shows the links used



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

155

Apart from those few minor differences the SQLTXPLAIN report is the same. Even though XTRSBY is very useful 
in its limited way, we still need to collect some information on the standby system itself. In earlier versions of SQLT 
(for example, 11.4.4.6), the read-only  tool roxtract.sql would be used. This tool is now replaced with SQLHC 
chapter 14). The read-only (ro) tool is still useful, and if you have an older version of SQLT you may want to use this 
tool anyway. The tool is named with an RO prefix to indicate it is a read-only tool and does most of what the main 
XTRACT tool does. It is however not available from version 11.4.5.1 of SQLT onward.

The roxtract Tool
The utl area of the SQLT directory has many useful utilities in it. One of these is roxtract.sql. This read-only routine 
is specially designed for running in a read-only database and so is ideal for a Data Guard Physical Standby Database 
open in read-only mode. I’m sure you’re already asking how this routine is different from the xtrsby.sql routine 
we’ve just been looking at. The simple answer is that running remotely (like xtrsby.sql) across a database link 
doesn’t get us everything. Some things are better done locally, and we’ll see shortly what roxtract.sql produces. 
This routine runs directly on the read-only Data Guard standby database (with a suitably privileged account) and 
produces the reports locally unlike xtrsby.sql, which produces its reports on the read-write database. To get at  
this extra information we have to use the routines provided in the utl directory. Here’s the directory listing on a 
windows system.

Figure 9-3. The standby database link is shown in the Environment section



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

156

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl>dir
 Volume in drive C has no label.
 Volume Serial Number is 77E9-80B4
 

Directory of C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\utl

11/03/2012  10:08 AM    <DIR>          .
11/03/2012  10:08 AM    <DIR>          ..
07/02/2011  12:49 AM               130 10053.sql
04/02/2012  12:43 PM             4,828 coe_gen_sql_profile.sql
08/18/2012  11:25 AM             1,185 coe_gen_sql_profile_.zip
06/02/2012  05:28 AM            10,305 coe_load_sql_baseline.sql
04/02/2012  12:43 PM            12,007 coe_load_sql_profile.sql
05/02/2012  11:27 AM            18,248 coe_xfr_sql_profile.sql
07/02/2011  12:49 AM               101 flush.sql
08/18/2012  11:25 AM                33 missing_file.txt
07/02/2011  12:49 AM               184 plan.sql
06/02/2012  05:28 AM            22,527 profiler.sql
06/02/2012  05:28 AM            73,472 pxhcdr.sql
06/02/2012  05:28 AM            71,213 roxecute.sql
11/03/2012  10:08 AM             3,441 roxtract.log
06/02/2012  05:28 AM            70,126 roxtract.sql <<< Read Only Procedure
08/11/2011  03:46 AM               475 sel.sql
02/02/2012  01:19 PM               435 sel_aux.sql
06/02/2012  05:28 AM           160,393 sqlhc.sql
01/03/2012  12:04 AM             2,891 sqltcdirs.sql
08/11/2011  03:46 AM             4,014 sqlthistfile.sql
08/11/2011  03:46 AM             3,116 sqlthistpurge.sql
04/02/2012  12:43 PM             3,694 sqltimp.sql
04/02/2012  12:43 PM             2,927 sqltimpfo.sql
01/03/2012  12:04 AM             3,545 sqltlite.sql
03/02/2012  04:06 PM             3,900 sqltmain.sql
09/01/2012  12:16 PM             6,802 sqltprofile.log
01/03/2012  12:04 AM             5,469 sqltprofile.sql
09/01/2012  12:16 PM             4,021 sqlt_s89910_p725901306_sqlprof.sql
09/01/2012  10:53 AM             4,548 sqlt_s89915_p3005811457_sqlprof.log
09/01/2012  09:29 AM             4,147 sqlt_s89915_p3005811457_sqlprof.sql
08/18/2012  09:33 AM                74 x.sql
02/18/2012  10:04 AM    <DIR>          xgram
02/02/2012  12:15 PM    <DIR>          xhume
06/01/2012  09:39 AM    <DIR>          xplore
              30 File(s)        498,251 bytes
               5 Dir(s)   7,103,299,584 bytes free



CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

157

How Do We Use roxtract?
As we saw above roxtract.sql can be found in the utl directory of the SQLT unzipped area. You still need this 
procedure to be present on the target system, but you do not need the SQLTXPLAIN schema, in fact in the case of 
roxtract.sql you run the script as SYS. This is the target SQL in this case:

SQL>
 
select /*+ GATHER_PLAN_STATISTICS MONITOR*/
  cust_first_name,
  amount_sold
from
  customers C,
  sales S
where
  c.cust_id=s.cust_id
  and amount_sold > 1750

Now we get the SQL ID:

SQL> select sql_id from v$sqlarea where sql_text like 'select /*+ GATHER_PLAN_STATISTICS%';
SQL_ID
-------------
dck1xz983xa8c

Now that we have the SQL ID we can run the roxtract script from the SYS account. Notice that we have to 
enter the SQL ID the licensing level and if we want to select 10053 information. Notice there is no prompt for the 
SQLTXPLAIN schema password, because we do not use it.

SQL>@roxtract
Parameter 1:
Oracle Pack License (Tuning, Diagnostics or None) [T|D|N] (required)
Enter value for 1: T <<<You must enter a value here
PL/SQL procedure successfully completed.
 
Parameter 2:
SQL_ID of the SQL to be analyzed (required)
 
Enter value for 2: dck1xz983xa8c <<<This is the SQL ID we are investigating
 
Parameter 3:
EVENT 10053 Trace (on 11.2 and higher) [Y|N]
 
Enter value for 3: Y <<<We want a 10053 trace file.
 
PL/SQL procedure successfully completed.
 
Values passed:
~~~~~~~~~~~~~
License: "T"
SQL_ID : " dck1xz983xa8c"
Trace : "Y"

CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

158

PL/SQL procedure successfully completed.

SQL>
SQL>DEF script = 'roxtract';
SQL>DEF method = 'ROXTRACT';
SQL>
SQL>--
SQL>-- begin common
SQL>--
SQL>
SQL>DEF mos_doc = '215187.1';
SQL>DEF doc_ver = '11.4.4.6';
SQL>DEF doc_date = '2012/06/02';
SQL>DEF doc_link = 'https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=';
SQL>DEF bug_link = 'https://support.oracle.com/CSP/main/article?cmd=show&type=BUG&id=';
SQL>
SQL>-- tracing script in case it takes long to execute so we can diagnose it
SQL>ALTER SESSION SET TRACEFILE_IDENTIFIER = "^^script._^^unique_id.";

Session altered.

Elapsed: 00:00:00.00
SQL>ALTER SESSION SET STATISTICS_LEVEL = 'ALL';

I’ve excluded most of this output, because it is very long. The output finishes with this:

Ignore CP or COPY error below
'cp' is not recognized as an internal or external command,
operable program or batch file.
f:\app\stelios\diag\rdbms\snc2\snc2\trace\snc2_ora_5768_DBMS_SQLDIAG_10053_20121103_111817.trc
 1 file(s) copied.
 adding: roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855_10053_trace_from_cursor.trc
(164 bytes security) (deflated 80%)
test of roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855.zip OK

ROXTRACT files have been created:
roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855_main.html.
roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855_monitor.html.

We can see from the above that a zip file has been created. If we extract the contents of this zip file into a directory
we will see a number of files.

11/03/2012 11:22 AM <DIR> .
11/03/2012 11:22 AM <DIR> ..
11/03/2012 11:18 AM 17,035 roxtract.log
11/03/2012 11:19 AM 133,666 roxtract_SNC2_locutus_11.2.0.1.0_
dck1xz983xa8c_20121103_111855_10053_trace_from_cursor.trc
11/03/2012 11:19 AM 122,477 roxtract_SNC2_locutus_11.2.0.1.0_
dck1xz983xa8c_20121103_111855_main.html
11/03/2012 11:19 AM 10,113 roxtract_SNC2_locutus_11.2.0.1.0_
dck1xz983xa8c_20121103_111855_monitor.html
 4 File(s) 283,291 bytes
 2 Dir(s) 7,103,459,328 bytes free

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=
https://support.oracle.com/CSP/main/article?cmd=show&type=BUG&id=

CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

159

We see four files, one of which is the log of the roxtract.sql procedure. The remaining three files represent
some of the missing output from XTRSBY. The first is the 10053 trace file, which we specifically requested. We
discussed this extensively in Chapter 5, so there’s no need to go through its contents. The other two are HTML files,
the “main” HTML file and the “monitor” HTML file. Let’s look at what information roxtract.sql provides.

What Do roxtract Reports Look Like?
The first report roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855_main.html (in this example)
is the roxtract main report. It is a trimmed down version of the SQLTXTRACT report, but nonetheless an amazingly
useful HTML file. Let’s look at the top of this HTML file, as shown in Figure 9-4.

Figure 9-4. The top of the HTML ROXTRACT report

CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

160

As you can see, roxtract is weaker than the powerful XTRACT report. The number of sections it covers is reduced,
but you still have the execution plans, table information and many other sections.

The other file supplied by roxtract is roxtract_SNC2_locutus_11.2.0.1.0_dck1xz983xa8c_20121103_111855_
monitor.html. The HTML defaults to the Plan Statistics tab as shown in Figure 9-5.

Figure 9-5. The left-hand side of the page of the Monitored Execution Details page

The figure above shows only the left hand side of the report. We see the expected execution steps and the
estimated number of rows and the associated cost. We also have access to the menu, which allows us to choose
between different displays. The right hand of the report shows us more information about the actual rows returned
I/O requests and any wait activity. For this SQL there is nothing much to say, but you need to know those entries are
there. See Figure 9-6.

CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

161

There’s even a button to change the language of the report. The drop-down list includes English, German,
Spanish, French, Italian, Korean, and other languages. If you click on the Plan tab, highlighted in Figure 9-5, you can
also get a flow diagram version of the execution plan (as seen in Figure 9-7).

Figure 9-6. The right hand side of the Monitored Execution Details page

Figure 9-7. Shows the flow chart representation of the execution plan

Some developers prefer this representation of the execution plan, and they even get a choice of the flow going left
to right or bottom to top.

CHAPTER 9 ■ USING SQLTXPLAIN WITH DATA GUARD PHYSICAL STANDBY DATABASES

162

Summary
In this chapter we covered the special case of Data Guard tuning and the utilities SQLTXPLAIN gives us to deal with
this situation. You should not view Data Guard as a black box where no tuning can be done if it is open in read-only
mode. Many companies do this, and you should be able to investigate performance if you need to. Now you can with
XTRSBY and its trusty sidekick roxtract.sql. In the next chapter we will deal with comparison of execution plans.
This is a very powerful technique for determining what has changed in an execution plan: and believe me, in an
execution plan, nothing ever stays the same.

163

CHAPTER 10

Comparing Execution Plans

Comparing execution plans is one of the most useful diagnostic tests you can do. If you’re lucky enough to have a
good execution plan, you can use that plan as a guide to bring the bad execution plan into compliance. In Chapter 6
we talked about using SQL Profiles to apply a plan onto another database’s SQL, in order to have an emergency
option. Suppose, however, you have more time to consider the difference and try to fix it properly, rather than using
the SQL Profile sticking plaster. SQLTCOMPARE is the tool for the job. It will compare two target systems for the same
SQL and produce a report that describes the differences. You can even import the SQLTXPLAIN repositories from
the two target systems and do the comparison there. This chapter is a pure SQLTXPLAIN chapter, we will be using
SQLTXPLAIN’s method SQLTCOMPARE and showing how our tuning knowledge from previous chapters can be used
to diagnose a problem.

How Do You Use SQLTCOMPARE?
We will go through the steps for using SQLTCOMPARE in more detail with a practical example, but in broad terms the
steps to use SQLTCOMPARE are as follows:

1. Get the SQL ID of the SQL you are investigating on both target databases. It should be
the same.

2. Then run a main method on this SQL on BOTH target systems.

3. Make a note of the statement ID from both runs of the main method.

4. Create a directory to keep the files from your main method zip files.

5. Unzip both main methods into their respective directories.

6. Create another directory inside the main method directory to keep just the test case file
(which is from a zip file inside the main method files: yes a zip file within a zip file). We will
look at test cases in detail in Chapter 11.

7. Unzip the test case files into the test case dedicated area.

8. Then import one of the repositories of the statement ID to the other database or import
both repositories to a third database (this is the method we will use).

9. Then finally run SQLTCOMPARE.

SQLTCOMPARE relies on the information in the SQLT repository to do its comparison and must have the
information that’s collected from one of the main methods. The main methods are:

XTRACT (We covered this in Chapter 1)•

XECUTE (Also covered in Chapter 1)•

CHAPTER 10 ■ COMPARING EXECUTION PLANS

164

XTRXEC•

XPLAIN•

XTRSBY (We covered this in Chapter 9)•

Because SQLTCOMPARE can be used with any of the main methods, it can also be used to compare SQL
statements from two different systems, or from a primary and a standby database (if you use XTRSBY). It can even be
used to compare execution on two different platforms: for example, a Linux and Windows and from a different version
of the database as well. For example, 10g on Linux could be compared with 11g from Solaris.

A Practical Example
In this example we will compare the executions of the following statement against two target databases, but the steps
apply to any SQL:

SQL> host type chapter10_01.sql
select
 s.amount_sold,
 c.cust_id,
 p.prod_name
from
 sh.products p,
 sh.sales s,
 sh.customers c
where
 c.cust_id=s.cust_id
 and s.prod_id=p.prod_id
 and c.cust_first_name='Theodorick';

Usually you would notice a difference in performance of a particular SQL if your batch times were different or
if your OLTP performance was markedly different and you were investigating the databases looking for differences.
You could also be doing an evaluation of the relative performance of two different platforms before migration. For the
purposes of this example we have noticed that our target SQL has a different plan on system 1 than on system 2. We
created the tables on system 2 from system 1, and the databases are on the same platform and hardware, but we see
some differences in the execution plan. On the first database we see this execution plan:

SQL> set autotrace traceonly explain
SQL> set lines 200
SQL> /
Execution Plan
--
Plan hash value: 725901306

CHAPTER 10 ■ COMPARING EXECUTION PLANS

165

--
| Id |Operation |Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop
--
| 0 |SELECT STATEMENT | | 5557 | 303K| 908 (3)| 00:00:11 | | |
|* 1 | HASH JOIN | | 5557 | 303K| 908 (3)| 00:00:11 | | |
| 2 | TABLE ACCESS FULL |PRODUCTS | 72 | 2160 | 3 (0)| 00:00:01 | | |
|* 3 | HASH JOIN | | 5557 | 141K| 904 (3)| 00:00:11 | | |
|* 4 | TABLE ACCESS FULL |CUSTOMERS | 43 | 516 | 405 (1)| 00:00:05 | | |
| 5 | PARTITION RANGE ALL | | 918K| 12M| 494 (3)| 00:00:06 | 1 | 28 |
| 6 | TABLE ACCESS FULL |SALES | 918K| 12M| 494 (3)| 00:00:06 | 1 | 28 |
--
Predicate Information (identified by operation id):

 1 - access("S"."PROD_ID"="P"."PROD_ID")
 3 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - filter("C"."CUST_FIRST_NAME"='Theodorick')

On the second system we see the execution plan is slightly different:

SQL> set autotrace traceonly explain
SQL> set lines 200
SQL> /

Execution Plan
--
Plan hash value: 3857478275

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 2789 | 473K| 1652 (2)| 00:00:20 |
|* 1 | HASH JOIN | | 2789 | 473K| 1652 (2)| 00:00:20 |
| 2 | TABLE ACCESS FULL | PRODUCTS | 72 | 6480 | 3 (0)| 00:00:01 |
|* 3 | HASH JOIN | | 2789 | 228K| 1648 (1)| 00:00:20 |
|* 4 | TABLE ACCESS FULL| CUSTOMERS | 17 | 765 | 409 (1)| 00:00:05 |
| 5 | TABLE ACCESS FULL| SALES | 860K| 31M| 1235 (1)| 00:00:15 |

Predicate Information (identified by operation id):

 1 - access("S"."PROD_ID"="P"."PROD_ID")
 3 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - filter("C"."CUST_FIRST_NAME"='Theodorick')

Note

dynamic sampling used for this statement (level=2)

The cost is different, the details of the plan are different, there could also be other differences, but that’s not the
point here. What can SQLTCOMPARE tell us about the difference between these two identical pieces of SQL that
behave differently? In the non-SQLTXPLAIN world, we would now be searching for differences between the systems,

CHAPTER 10 ■ COMPARING EXECUTION PLANS

166

looking at all the likely suspects one by one, with all their special tools, which would be a long-winded and error-
prone process. With SQLTCOMPARE, however, we collect all the information and do a comparison of everything in
one go. Then we decide what’s important.

Collecting the Main Method Repository Data
The steps in collecting the SQLTXPLAIN data are just the standard methods we have already used. In this example
we’ll use SQLTXECUTE. To recap, the steps are to identify the SQL ID, create a file with the SQL statement in it
(including any bind variables), and then run SQLTXECUTE on both systems.

We already mentioned the SQL statement above, and we can check on both systems that the SQL ID is the same.
On both systems 1 and 2 we get:

SQL> select sql_id from v$sqlarea where sql_text like 'select %Theodorick%';

SQL_ID

2qjq95uds6hpd

This is a simple step, but an important one. Without verifying that the SQL_ID is the same we could be
comparing slightly different SQLs. In which case the comparison will not work. For each main method we use we
are collecting information about the SQL statement and we need to take note of the statement ID (not the SQL IDs).
That’s the statement number that SQLTXPLAIN assigns to the run of the SQLT method. So on the first system we run
SQLTXECUTE like this:

SQL> @sqltxecute chapter10_01.sql

The file chapter10_01.sql contains the SQL mentioned above. When the SQLTXECUTE method completes
we see this output.

File sqlt_s96376_xecute.zip for chapter10_01.sql has been created.

SQLTXECUTE completed.

Here we take a note of the statement ID, in this case it is 96376. Similarly on the second system we run the same
SQL (remember we checked the SQL ID) and use the same file to run SQLTXECUTE again. The output from the
second system is this:

File sqlt_s73560_xecute.zip for chapter10_01.sql has been created.

SQLTXECUTE completed.

Preparing the Main Method Repository Data
The execution of sqltxecute creates zip files that contain important information. The information in this zip file
contains instructions on how to import the data into another SQLT repository, but first you must unzip the main
zip file. From the execution of the two main methods on the target systems we see that the statement IDs are 96376
(low CBO cost) and 73560 (higher CBO cost). In this case I created two directories, sqlt_s96376 and sqlt_s73560, each
with the corresponding zip file in it, which I then unzipped. Each directory contains many files as we’ve learned,
but in this case we are interested in the readme file, called sql_snnnnn_readme.html. This is your go to file in case
of doubt (and this book of course). In this file the exact steps are described to carry out many functions including
SQLTCOMPARE actions. This is the top of the readme file for the SQLTXECUTE report we ran on the first target system
(see Figure 10-1).

CHAPTER 10 ■ COMPARING EXECUTION PLANS

167

If we click on the “Using SQLT COMPARE” hyperlink in this part of the report we are taken to the steps
describing the actions we need to take to import the data into a new database (or in fact the same database) to do the
comparison. See Figure 10-2 for the readme section for s96376.

Figure 10-1. The top of the readme file

Figure 10-2. The instructions for SQLTCOMPARE show the import

CHAPTER 10 ■ COMPARING EXECUTION PLANS

168

Notice that we have to unzip the sqlt_s96376_tc.zip file, which is found inside the main SQLT zip file. We’ll do
more with the test case file in Chapter 11, which is on building good test cases. For the moment, however, we need
only concern ourselves with the dump file found inside the test case zip file. I’ve unzipped this file into a directory
called “TC” inside the unzipped area. Now making sure that your SID is pointing to the right database (in my case
I am importing into a third database), we execute the instructions to import the data into our third database.

Importing the Respository Data
Importing the repository data is the last step before we can actually run SQLTCOMPARE. As long as we’ve kept track of
the various zip files along the way, it should only be a matter of importing the files.

imp sqltxplain file=sqlt_s96376_exp.dmp tables=sqlt% ignore=y

Import: Release 11.2.0.1.0 - Production on Sat Nov 17 14:38:09 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

Export file created by EXPORT:V11.02.00 via conventional path
import done in WE8MSWIN1252 character set and AL16UTF16 NCHAR character set
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. . importing table "SQLT$_SQL_STATEMENT" 1 rows imported
. . importing table "SQLT$_AUX_STATS$" 13 rows imported
. . importing table "SQLT$_DBA_AUTOTASK_CLIENT" 1 rows imported
. . importing table "SQLT$_DBA_COL_STATS_VERSIONS" 248 rows imported
. . importing table "SQLT$_DBA_COL_USAGE$" 13 rows imported

---Output removed for clarity

. . importing table "SQLT$_STGTAB_SQLSET" 7 rows imported
. . importing table "SQLT$_V$SESSION_FIX_CONTROL" 406 rows imported
. . importing table "SQLT$_WRI$_ADV_RATIONALE" 2 rows imported
. . importing table "SQLT$_WRI$_ADV_TASKS" 2 rows imported
Import terminated successfully without warnings.

This has imported the required information from the first database (the good execution plan) into the
SQLTXPLAIN schema on the third database. Now we repeat the entire process for the second database.

imp sqltxplain file=sqlt_s73560_exp.dmp tables=sqlt% ignore=y
Import: Release 11.2.0.1.0 - Production on Sat Nov 17 14:48:31 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

CHAPTER 10 ■ COMPARING EXECUTION PLANS

169

Export file created by EXPORT:V11.02.00 via conventional path
import done in WE8MSWIN1252 character set and AL16UTF16 NCHAR character set
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. . importing table "SQLT$_SQL_STATEMENT" 1 rows imported
. . importing table "SQLT$_AUX_STATS$" 13 rows imported
. . importing table "SQLT$_DBA_AUTOTASK_CLIENT" 1 rows imported
. . importing table "SQLT$_DBA_COL_USAGE$" 5 rows imported
---Output removed for clarity
. . importing table "SQLT$_STGTAB_SQLSET" 6 rows imported
. . importing table "SQLT$_V$SESSION_FIX_CONTROL" 406 rows imported
. . importing table "SQLT$_WRI$_ADV_RATIONALE" 8 rows imported
. . importing table "SQLT$_WRI$_ADV_TASKS" 2 rows imported
. . importing table "SQLT$_WRI$_OPTSTAT_AUX_HISTORY" 18 rows imported
Import terminated successfully without warnings.

Now all that remains to be done is to run the SQLTCOMPARE method. The script for this is in the “run” area.
Logged in as SQLTXPLAIN we run SQLTCOMPARE.

Running SQLTCOMPARE
Once we have imported the data we can run SQLTCOMPARE. We can run it with or without the parameters on the
command line. In this case I’ll omit the parameters so that we can see what the prompts are:

SQL> @sqltcompare
. . . please wait . . .

STAID MET INSTANCE SQL_TEXT
----- --- -------- --
73560 XEC snc2 select s.amount_sold, c.cust_id, p.prod_name from sh
96376 XEC snc1 select s.amount_sold, c.cust_id, p.prod_name from sh

Parameter 1:
STATEMENT_ID1 (required)

Enter value for 1: 96376

Parameter 2:
STATEMENT_ID2 (required)

Enter value for 2: 73560

We see that the SQLTCOMPARE method immediately identifies the statements that we could compare and shows
them to us (because we did not specify the statement Ids on the command line). Our good execution plan was run
on snc1 (statement ID 96376), and our not so good execution plan was run on snc2 (a newly created database).
I always like to compare good to bad, so for the first statement ID I’ll enter 96376 and for the second I’ll enter the only
remaining statement ID 73560. (When you do your own comparisons you can compare the SQLs anyway you like, but
I like the good vs. bad convention to keep me focused on finding the differences the right way around).

Now we are presented with the plan hash value history for each of the statements on each instance so we can
choose which plan hash values to compare. In this case I’ll compare the best plan on both systems.

CHAPTER 10 ■ COMPARING EXECUTION PLANS

170

PLAN_HASH_VALUE SQLT_PLAN_HASH_VALUE STATEMENT_ID ATTRIBUTE
--------------- -------------------- ------------ ---------
 725901306 16588 96376 [B][W]
 2025531852 21473 96376
 3852404249 68517 96376

Parameter 3:
PLAN_HASH_VALUE1 (required if more than one)

Enter value for 3: 725901306

PLAN_HASH_VALUE SQLT_PLAN_HASH_VALUE STATEMENT_ID ATTRIBUTE
--------------- -------------------- ------------ ---------
 3850511567 8739 73560
 3857478275 9628 73560 [B][W]
 3858714362 69559 73560

Parameter 4:
PLAN_HASH_VALUE2 (required if more than one)

Enter value for 4: 3857478275
Values passed to sqltcompare:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STATEMENT_ID1   : "96376"
STATEMENT_ID2   : "73560"
PLAN_HASH_VALUE1: "725901306"
PLAN_HASH_VALUE2: "3857478275"
 
 
. . . please wait . . .
 
15:03:03 sqlt$c: => compare_report
15:03:03 sqlt$a: -> common_initialization
15:03:03 sqlt$a: ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ".,"
15:03:03 sqlt$a: <- common_initialization
15:03:03 sqlt$c: -> header
15:03:03 sqlt$c: -> sql_text
15:03:03 sqlt$c: -> sql_identification
15:03:03 sqlt$c: -> environment
15:03:03 sqlt$c: -> nls_parameters
15:03:03 sqlt$c: -> io_calibration
15:03:03 sqlt$c: -> cbo_environment
15:03:03 sqlt$c: -> fix_control
15:03:03 sqlt$c: -> cbo_system_statistics
15:03:03 sqlt$c: -> execution_plan
15:03:03 sqlt$c: plan 96376 "GV$SQL_PLAN" "725901306" "-1" "1" "1" "43F746F4"
15:03:03 sqlt$c: plan 73560 "GV$SQL_PLAN" "3857478275" "-1" "1" "0" "2A13E128"
15:03:03 sqlt$c: -> tables
15:03:04 sqlt$c: -> table_partitions
15:03:04 sqlt$c: -> indexes



CHAPTER 10 ■ COMPARING EXECUTION PLANS

171

15:03:04 sqlt$c: -> index_partitions
15:03:04 sqlt$c: -> columns
15:03:05 sqlt$c: -> footer_and_closure
15:03:05 sqlt$c: <= compare_report

sqlt_s96376_s73560_compare.html has been generated

SQLTCOMPARE completed.

Now we have a file called sqlt_s96376_s73560_compare.html:

C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\run>dir *compare*.html
 Volume in drive C has no label.
 Volume Serial Number is 77E9-80B4

 Directory of C:\Documents and Settings\Stelios\Desktop\SQLT\sqlt\run

11/17/2012  03:03 PM           355,957 sqlt_s96376_s73560_compare.html
               1 File(s)        355,957 bytes
               0 Dir(s)   7,088,697,344 bytes free

Reading the SQLTCOMPARE Report
The HTML file produced by running SQLTCOMPARE contains information that compares the plan hash value from 
each of the two target databases. In this case the first system was slightly faster than the second system. There could be 
many reasons for this, but the key element here is to see which sections are there for investigation. We already know 
the execution plan is slightly different. Here is the top of the SQLTCOMPARE report for our example (see Figure 10-3).

Figure 10-3. The top of the SQLTCOMPARE report

If we click on the SQL Identification hyperlink from the top of the report, we’ll see differences (if there are any) as 
shown in Figure 10-4.



CHAPTER 10 ■ COMPARING EXECUTION PLANS

172

Notice we did indeed choose the same SQL ID, but that some entries are marked in red highlighted by the 
boxes in Figure 10-4), to indicate that there are differences. This method of showing differences is not consistently 
used throughout the report. Sometimes sections are marked in amber for differences that are not so important, but 
generally differences marked in red are important and should be noted and understood before moving on.

The next section is the Environment section, for which an example is shown in Figure 10-5.

Figure 10-4. The SQL Identification shows some basic differences



CHAPTER 10 ■ COMPARING EXECUTION PLANS

173

Here the things that are the same are just as important as the things that are different. We can see immediately 
that the CPU count is the same, the RAC environment is the same, and the block size is the same. Some differences 
exist: the character set, time zone, etc.

In the main HTML Compare report (as shown in Figure 10-3) we can scan from top to bottom. This is not a long 
complicated report like the main SQLTXTRACT or SQLTXECUTE report. There are also sections on:

SQL Text•

SQL Identification•

Environment•

NLS session parameters•

I/O calibration•

CBO parameters•

Fix control•

CBO System statistics•

Execution plans•

Table information•

Figure 10-5. The Environment section of the SQLTCOMPARE report



CHAPTER 10 ■ COMPARING EXECUTION PLANS

174

Table partition information•

Index information•

Index partition information•

Column information•

Peeked binds•

Captured binds•

And of course there are the execution plans (as shown in Figure 10-6). Much of this information is exactly the 
same as you would see in a SQLTXRACT report, so we won’t dwell on it too much here. The important thing to note 
is that it gives you an easy side-by-side comparison for many features including the execution plan (see Figure 10-6). 
This is a great way to quickly spot differences, especially if you have hundreds of lines in your execution plan and only 
one line is different (yes, it does happen and yes, it can make a vast difference in the execution time).

Figure 10-6. The Execution plans side by side from the two systems

The most important section is the Plan Summary. This shows the average elapsed time and CPU time for both 
compared SQL statements. We see an example of this in Figure 10-7.



CHAPTER 10 ■ COMPARING EXECUTION PLANS

175

Figure 10-7. The Plan Summary section of the report

Not only can we see how the two statements compare in terms of elapsed time (which might be misleading if the 
load on the two systems is different), but we also see the CPU time in seconds and the average number of buffer gets, 
which is usually a good measure of how good an execution plan is compared to a different run of the same SQL. I’ve 
highlighted the buffer gets with an arrow. Naturally every line of the plan summary is telling us something. I’ve listed 
below the items I consider important:

Avg. Elapsed Time in secs: clearly important if the load on the systems is comparable as it is an •
indication of the performance of the SQL.

Avg. CPU Time in secs: the CPU time in comparison to the total elapsed time can tell you if the •
SQL is CPU bound or not.

Avg. User I/O Wait Time in secs: a measure of how much time is spent on I/O could tell you if •
you are I/O bound.

Avg. Buffer Gets: can be a good comparison between individual runs of the same SQL on busy •
systems with much activity where relative performance from one run to another is hard to gauge.



CHAPTER 10 ■ COMPARING EXECUTION PLANS

176

Avg. Disk Reads: shows how many of your reads are going to disk.•

Avg. Direct Writes: indicates how much of your I/O is a direct write.•

Avg. Rows Processed: in comparisons you would expect these to be the same if the data was •
the same.

Total Executions: this gives you an idea of how many times the SQL was run on each system.•

Total Fetches: a measure of the data returned in all executions.•

Total Version Count: a count of the number of versions of the cursor found on the system.•

Total Loads: the number of times the SQL was loaded.•

Total Invalidations: shows how many times the SQL was made invalid.•

Is Bind Sensitive: discussed in Chapter 7.•

Min Optimizer Environment: shows the minimum optimizer environment hash value.•

Max Optimizer Environment: shows the maximum optimizer environment hash value  •
(this and the previous value are useful for comparing environment values).

Optimizer Cost: useful to compare overall cost.•

Estimated Cardinality: useful to see what the optimizer estimated.•

Estimated Time in Seconds: another measure of the optimizer calculations.•

Plan Time Stamp: shows when the execution plan was calculated.•

First Load Time: when the plan was first loaded into memory.•

Last Load Time: when the plan was loaded into memory last.•

Src:  shows where the information was derived from.•

Source: shows which source was used in this case GV$SQLAREA_PLAN_HASH.•

We see a lot of sections that are different from one another, but Compare is not intelligent enough to tell us what 
is important in all cases. In this case we can confirm that the elapsed time was slightly higher on the second target 
system than on the first system. In this case the amber color used in the report indicates that the comparisons are 
not so different as to cause a problem but should probably be investigated if there aren’t any other more pressing 
problems. In percentage terms “Avg User I/O Wait Time in secs” is very different (as one of the values is 0.000), so this 
is highlighted in red. The same applies to disk reads. Other differences are not so important (such as plan time stamp), 
but these are shown in red anyway. Remember these are only guidelines, so you must decide what’s important in 
terms of a difference because you know your environment and circumstances. SQLTCOMPARE is there to show you 
the differences so as to allow you to make a good decision quickly.

Summary
Comparison of two SQL statement IDs and plan hash values is an invaluable method for highlighting differences,  
which sometimes do not stand out on individual inspection. SQLTCOMPARE is also invaluable in confirming the 
differences detected by users or developers and thereby eliminating other sources as the cause of differences. Different 
environments can often be challenging to compare because there are so many differences that can affect the execution 
plan. SQLTCOMPARE grabs all the information available and shows it side by side in a simple-to-read report. Yet another 
case of SQLTXPLAIN making a complex job fast and easy. In the next chapter we look at building good test cases and how 
these can be used to modify your execution plan.



177

CHAPTER 11

Building Good Test Cases

Occasionally there are tuning problems where the solution is not obvious from the examination of the SQLTXTRACT 
or SQLTXECUTE report. All the usual suspects have been eliminated and a more thorough investigation may be 
required. In cases like these it is useful to build a test case to allow experimentation away from the main environment. 
If you are investigating a problematic SQL in a test environment, normally you would try and make the environment 
the same as the environment you are attempting to replicate. This is often very difficult to do because there are many 
factors affecting an environment that need to be copied. Here are some of them.

Hardware•

Software•

CBO parameters•

Object Statistics•

Dictionary statistics•

Data•

Table clustering factors.•

Indexes•

Sequences•

Tables•

There are many other factors; some factors may be crucial to your problem, but others may not be. You can try and 
build a test case the old fashioned way, by exporting the data and associated statistics to a test environment, but this is an 
error prone manual process, unless you’ve built a script to do this. Luckily SQLT does everything needed to build a test 
case in a few very simple steps. It’s platform independent, so you can run a Solaris test case on Windows for example: it’s 
easy to use and automated. The only thing that is not usually replicated is the data (because that would usually make the 
test case too big). However, data can be included if needed (we include an example at the end of this chapter).

Warning ■  Only run test case setup scripts in environments that you can easily replace. Some of the scripts involved in 

setting up the test environment will change the operational environment. There is a good reason you need access to SYS 

to carry out these operations. They will change system setup. Typically, you would create a stand-alone database for a 

test case and work with only that test case in your environment. When you are finished with the test case you would drop 

the entire database. Re-using such a database would be a dangerous course of action. Any number of CBO parameters 

may have been changed. Only set up test case in scrap databases. You have been warned.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

178

What Can You Do with Test Cases?
In some situations tuning can be a tricky job. Before you can start to investigate the problem, you have to understand 
what all the parts of the execution plan are doing. Sometimes this understanding comes from tinkering with a copy 
of the SQL and its environment. You can add indexes, change hints, change optimizer parameters, drop histogram 
statistics—the list is endless. These kinds of things are done not at random but based on some understanding  
(or at least as much as you have at the time) of the problem at hand.

All this kind of tinkering cannot be done on a production environment, and it is often difficult to do on a 
development environment because the risk is too high that some aspect of your case will affect someone else: for 
example, public synonyms or sequences. On the other hand if you can set up a little private database with a good test 
case you can change all sorts of parameters without affecting anyone directly. As long as the versions of the database are 
the same you will get mostly the same behavior. I say “mostly” because in some cases (such as Exadata) there are specific 
issues that need an environment closer to the one you are replicating. Hybrid columnar compression, for example, 
cannot be done on a non-Exadata environment. DBAs and developers have been creating scripts to create test cases 
for their environment ever since Oracle was released, but as the complexity of environments increased setting up good 
robust cases has taken longer and longer. These hand-crafted test cases are useful but too time consuming to create. 
SQLT does all of the hard work for you by automatically collecting all the required metadata and statistical information.

Building a Test Case
To get a test case requires no additional effort above running a SQLT report. Running SQLTXTRACT alone creates 
enough information for a test case. Here is an example directory showing the files from the main SQLT zip file. 
 
12/11/2012  08:47 PM             6,705 sqlt_s11992_driver.zip
12/11/2012  08:46 PM             3,452 sqlt_s11992_lite.html
12/11/2012  08:47 PM            12,646 sqlt_s11992_log.zip
12/11/2012  08:46 PM           507,040 sqlt_s11992_main.html
12/11/2012  08:46 PM            11,979 sqlt_s11992_readme.html
12/11/2012  08:46 PM             2,722 sqlt_s11992_sql_detail_active.html
12/11/2012  08:46 PM           909,869 sqlt_s11992_tc.zip <<<Test Case File
12/11/2012  08:46 PM            30,764 sqlt_s11992_tcx.zip <<<Test Case Express File
12/11/2012  08:46 PM               404 sqlt_s11992_tc_script.sql
12/11/2012  08:46 PM               297 sqlt_s11992_tc_sql.sql
12/11/2012  08:47 PM         1,012,953 sqlt_s11992_trc.zip
 

I’ve highlighted two of the files from this directory listing. The first one sqlt_s11992_tc.zip is the standard test 
case file. We’ll deal with what you can do with this file in the next section. The second file sqlt_s11992_tcx.zip is a 
recent innovation (as of December 2012) and we’ll discuss that in the section on test case express.

A Test Case Step by Step
The first step in creating your test case is to create a sub-directory of the main SQLT area. Then copy the  
sqlt_s11992_tc.zip file into this area and unzip the file. A number of files are created and we’ll describe each of 
them. Here is a sample listing.
 
12/11/2012  08:46 PM               132 10053.sql
12/11/2012  08:46 PM               103 flush.sql
12/11/2012  08:46 PM               279 plan.sql
12/11/2012  08:46 PM               404 q.sql
12/11/2012  08:46 PM                38 readme.txt



CHAPTER 11 ■ BUILDING GOOD TEST CASES

179

12/11/2012  08:46 PM               424 sel.sql
12/11/2012  08:46 PM               378 sel_aux.sql
12/11/2012  08:46 PM               448 setup.sql
12/11/2012  08:46 PM               267 sqlt_s11992_del_hgrm.sql
12/11/2012  08:46 PM         7,708,672 sqlt_s11992_exp.dmp
12/11/2012  08:46 PM               683 sqlt_s11992_import.sh
12/11/2012  08:46 PM             5,077 sqlt_s11992_metadata.sql
12/11/2012  08:46 PM               244 sqlt_s11992_purge.sql
12/11/2012  08:46 PM             9,720 sqlt_s11992_readme.txt
12/11/2012  08:46 PM               362 sqlt_s11992_restore.sql
12/11/2012  08:46 PM            84,648 sqlt_s11992_set_cbo_env.sql
12/11/2012  08:46 PM             1,285 sqlt_s11992_system_stats.sql
12/11/2012  08:46 PM           909,869 sqlt_s11992_tc.zip
12/11/2012  08:46 PM               141 tc.sql
12/11/2012  08:46 PM               965 tc_pkg.sql
12/11/2012  08:46 PM               117 xpress.sh
12/11/2012  08:46 PM             1,087 xpress.sql
 

The files in this directory are all that is needed (along with SQLT to create a test case on your database). In the 
next section we’ll look at these files in detail.

The Test Case Files
The scripts and other files in this directory are designed to work together to produce a test case simply and quickly.  
I list below each of the files and what they are for. Later we’ll see how these files work together to produce a realistic 
test environment.

• 10053.sql – Sets 10053 tracing at level 1

• flush.sql – Flushes the shared pool

• plan.sql – Displays the execution plan for the most recently executed SQL and spools the 
output to plan.log. It uses the dbms_xplan.display_cursor procedure.

• q.sql – The SQL being investigated.

• readme.txt – The instructions. They are very brief: for example, “connect as sys and execute 
setup.sql.”

• sel.sql – Computes predicate selectivity. This little script relies on sel_aux.sql (see below) 
and prompts for a table name and predicate and then gives you the predicted cardinality and 
selectivity. There is an example of the use of sel.sql below.

• sel_aux.sql – Produces expected cardinality and selectivity with sel.sql, based on different 
predicates.

• setup.sql – Sets up system statistics, creates the test user and metadata, imports the object 
statistics and the optimizer environment, executes the test query and displays the execution plan.

• sqlt_snnnnn_del_hgrm.sql – Deletes histograms for the TC schema.

• sqlt_snnnnn_exp.dmp – Dump file containing the statistics.

• sqlt_snnnnn_import.sh – Unix  version of the import script for the SQLT objects. 

• sqlt_snnnnn_metadat.sql – Script called from setup.sql; creates the test case user and  
user objects.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

180

• sqlt_snnnnn_purge.sql – Removes the reference to the test case SQL from the  
SQLT repository.

• sqlt_snnnnn_readme.txt – Documentation for the specific test case, containing brief 
instructions on exporting and importing the SQLT repository, using SQLT COMPARE, (covered 
in chapter 10), restoring CBO statistics and implementing a test case in both express mode 
and custom mode. 

• sqlt_snnnnn_restore.sql – Imports the CBO statistics into the test case. 

• sqlt_snnnnn_set_cbo_env.sql – Sets the CBO environment for the test case.

• sqlt_snnnnn_system_stats.sql – Sets the system statistics on the test system.

• tc.sql – Runs the test sql and displays the execution plan.

• tc_pkg.sql – Creates a tc.zip file for a small test case file.

• xpress.sh – The unix version of the script that runs xpress.sql. Builds the entire test case.

• xpress.sql – The SQL script that builds the entire test case in express mode.

As you can see there are quite a few files in the TC directory once you’ve unzipped it. Most of them are called from 
xpress.sql and setup.sql so we will not go into great detail on each of them, but some have some interesting  
stand-alone functions that we’ll look at after we’ve built the test case.

The SQL Statement
Remember that SQLT is about tuning one SQL statement at a time. In our example case we will be using this SQL:
 
select
  country_name, sum(AMOUNT_SOLD)
from sales s, customers c, countries co
where
  s.cust_id=c.cust_id
  and co.country_id=c.country_id
  and country_name in (
    'Ireland','Denmark','Poland','United Kingdom',
     'Germany','France','Spain','The Netherlands','Italy')
  group by country_name order by sum(AMOUNT_SOLD);
 

This example SQL totals the spending from each country in the European Union. This is the result of running  
this query:
 
COUNTRY_NAME                             SUM(AMOUNT_SOLD)
---------------------------------------- ----------------
Poland                                            8447.14
Denmark                                        1977764.79
Spain                                          2090863.44
France                                         3776270.13
Italy                                          4854505.28
United Kingdom                                 6393762.94
Germany                                        9210129.22
 
7 rows selected.
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

181

What it does is not important for this example. We only need the SQL ID (fp2wkm07dr0nd) and a SQLT XTRACT 
report. The intention here is to build a test case in another schema and then adjust the environment so that we can 
test different theories in isolation. In the normal way (as discussed in Chapter 1 and Chapter 3) we collect a SQLT 
XTRACT report and then place the zip file in a convenient place. In this case in the /run directory.

How to Build a Test Case Fast (XPRESS.sql)
First we create a directory to put the SQLTXTRACT report files in. In this directory I created a TC directory and put the 
test case zip file in the TC directory. Now that we have a test case directory and we’ve unzipped the test case files the 
quickest and simplest thing to do is to set up the test case user. Remember you need to be logged into SYS to do this 
operation. This is because some of the steps in xpress.sql will change the database environment. This environment 
cannot be shared with anyone else. So with all the warnings out of the way let’s proceed to create a test case.

First we’ll run xpress.sql. This will pause in various sections to give you a chance to review the steps and to 
check for any errors. If there are none, then normally you would press return to go to the next section. The steps in the 
script are each highlighted by a heading such as this:

1/7 Press ENTER to create TC user and schema objects for statement_id 64661.

The following list provides a high-level view of the script’s steps. Next, we’ll look at each of the several steps in 
more detail:

1. Create the test case user, the user objects (including tables and indexes), the name of the 
user is of the form TCnnnn. In step 1 you are prompted for a suffix for the name of the test 
case user. You can just hit Return at this point, or enter a suffix such as DEV. At the end of this 
section you should check to see if there are any invalid objects. Valid objects are also listed.

2. The SQL repository is purged of any previous incarnation of the SQL statement.

3. The SQL statement is imported into the SQL repository and system environment is 
restored using the import utility. You will be prompted to enter the password for the 
SQLTXPLAIN user. This step is one of the reasons why you should not run xpress on a 
system you cannot afford to lose.

4. The test user schema object statistics are restored.

5. The system statistics are restored.

6. You are connected to the test schema and the CBO environment is set up.

7. The test schema environment is set up the SQL is executed and the execution plan 
displayed.

Once you reach this stage, assuming there are no errors along the way, you are free to make changes to the test 
case environment (remember that this is a system that can be junked after this testing). You can change whatever you 
need to change to improve the performance of your test case, or sometimes you may want to change something about 
the test case to more fully understand what is happening and why the execution plan is the way it is. Next, we’ll look at 
each of the seven steps above in much more detail. We’ll see example output and explain what is happening. We’ll go 
through all the steps to set up a test case that you can work. 

1. In step 1 you are asked to confirm that you want to create a test case user in my case 
TC64661 and the schema objects.

1/7 Press ENTER to create TC user and schema objects for statement_id 64661.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

182

If you press Enter you complete step 1. In this step the script sqlt_snnnnn_metadata.sql is run. You are 
prompted for a test case user suffix. A typical value might be “_1”, but you can press RETURN to accept the default, 
which is no suffix. This then creates the metadata objects, such as tables and indexes as well as any constraints, 
functions, packages, views or any other metadata. At the end of this step you are shown the status of these objects. 
They should all be valid. Here is the screen from my example.
 
SQL>
SQL>
SQL> /**********************************************************************/
SQL>
SQL> REM PACKAGE
SQL>
SQL>
SQL> /**********************************************************************/
SQL> REM VIEW
SQL>
SQL>
SQL> /**********************************************************************/
SQL>
SQL> REM FUNCTION, PROCEDURE, LIBRARY and PACKAGE BODY
SQL>
SQL>
SQL> /**********************************************************************/
SQL>
SQL> REM OTHERS
SQL>
SQL>
SQL>
SQL> /**********************************************************************/
SQL>
SQL> SET ECHO OFF VER OFF PAGES 1000 LIN 80 LONG 8000000 LONGC 800000;
 
PL/SQL procedure successfully completed.
 
 
:VALID_OBJECTS
--------------------------------------------------------------------------------
VALID TABLE TC64661 COUNTRIES
VALID TABLE TC64661 CUSTOMERS
VALID TABLE TC64661 SALES
VALID INDEX TC64661 COUNTRIES_PK
VALID INDEX TC64661 CUSTOMERS_GENDER_BIX
VALID INDEX TC64661 CUSTOMERS_MARITAL_BIX
VALID INDEX TC64661 CUSTOMERS_PK
VALID INDEX TC64661 CUSTOMERS_YOB_BIX
VALID INDEX TC64661 SALES_CHANNEL_BIX
VALID INDEX TC64661 SALES_CUST_BIX
VALID INDEX TC64661 SALES_PROD_BIX
VALID INDEX TC64661 SALES_PROMO_BIX
VALID INDEX TC64661 SALES_TIME_BIX
  
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

183

:INVALID_OBJECTS
--------------------------------------------------------------------------------
 
 
SQL> REM In case of INVALID OBJECTS: review log, fix errors and execute again.
SQL> SPO OFF;
SQL> SET ECHO OFF;
 
2/7 Press ENTER to purge statement_id 64661 from SQLT repository.
 

In my example all my metadata objects are valid, and I have no packages, views, functions, or procedures. Since 
there are no invalid objects, I press Return to proceed with step2.

2. In step 2 sqlt_snnnnn_purge.sql is run. This purges the SQLT repository of any data 
related to the SQL statement that is being analyzed. It is common to reload a test case 
when needed. The script output looks like this

 
SQL> @@sqlt_s64661_purge.sql
SQL> REM Purges statement_id 64661 from local SQLT repository. Just execute  
"@sqlt_s64661_purge.sql" from sqlplu
SQL> SPO sqlt_s64661_purge.log;
SQL> SET SERVEROUT ON;
SQL> EXEC sqltxplain.sqlt$a.purge_repository(64661, 64661);
15:13:56 sqlt$a: purging repository
15:13:57 sqlt$a: TRUNCATE TABLE SQLI$_DB_LINK
15:13:57 sqlt$a: TRUNCATE TABLE SQLI$_FILE
15:13:57 sqlt$a: TRUNCATE TABLE SQLI$_STATTAB_TEMP
15:13:57 sqlt$a: TRUNCATE TABLE SQLI$_STGTAB_SQLPROF
15:13:57 sqlt$a: TRUNCATE TABLE SQLI$_STGTAB_SQLSET
15:13:57 sqlt$a: TRUNCATE TABLE SQLT$_AUX_STATS$
15:13:57 sqlt$a: TRUNCATE TABLE SQLT$_DBA_AUDIT_POLICIES
15:13:57 sqlt$a: TRUNCATE TABLE SQLT$_DBA_AUTOTASK_CLIENT
15:13:57 sqlt$a: TRUNCATE TABLE SQLT$_DBA_COL_STATS_VERSIONS
15:13:58 sqlt$a: TRUNCATE TABLE SQLT$_DBA_COL_USAGE$
15:13:58 sqlt$a: TRUNCATE TABLE SQLT$_DBA_CONSTRAINTS
15:13:58 sqlt$a: TRUNCATE TABLE SQLT$_DBA_DEPENDENCIES
15:13:58 sqlt$a: TRUNCATE TABLE SQLT$_DBA_HISTGRM_STATS_VERSN
15:13:58 sqlt$a: TRUNCATE TABLE SQLT$_DBA_HIST_ACTIVE_SESS_HIS

At the end of this section you are prompted to proceed with step 3.

15:14:03 sqlt$a: 128 tables were truncated
15:14:03 sqlt$a: -> delete_sqltxplain_stats
15:14:07 sqlt$a: <- delete_sqltxplain_stats
 
PL/SQL procedure successfully completed.
 
SQL> SET SERVEROUT OFF;
SQL> SPO OFF;
SQL> SET ECHO OFF;
 
3/7 Press ENTER to import SQLT repository for statement_id 64661.

 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

184

3. Step 3 imports the data collected from the target system into the SQLT repository. Here is 
the prompt that you see.

 
SQL> HOS imp sqltxplain FILE=sqlt_s64661_exp.dmp TABLES=sqlt% IGNORE=Y
 
Import: Release 11.2.0.1.0 - Production on Sat Dec 15 15:20:18 2012
 
Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All rights reserved.
Password:

 
You need to enter the password that you set for SQLTXPLAIN when you installed the utility. When you enter the 

password and press Enter the import begins. Below is an example of this.
 
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
 
Export file created by EXPORT:V11.02.00 via conventional path
import done in WE8MSWIN1252 character set and AL16UTF16 NCHAR character set
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. importing SQLTXPLAIN's objects into SQLTXPLAIN
. . importing table          "SQLT$_SQL_STATEMENT"          1 rows imported
. . importing table             "SQLT$_AUX_STATS$"         13 rows imported
. . importing table    "SQLT$_DBA_AUTOTASK_CLIENT"          1 rows imported
. . importing table "SQLT$_DBA_COL_STATS_VERSIONS"        452 rows imported
. . importing table         "SQLT$_DBA_COL_USAGE$"         14 rows imported
. . importing table        "SQLT$_DBA_CONSTRAINTS"         39 rows imported
. . importing table     "SQLT$_DBA_HIST_PARAMETER"      75307 rows imported
. . importing table   "SQLT$_DBA_HIST_PARAMETER_M"         22 rows imported
. . importing table      "SQLT$_DBA_HIST_SNAPSHOT"        214 rows imported
. . importing table       "SQLT$_DBA_HIST_SQLTEXT"          1 rows imported
. . importing table "SQLT$_DBA_HISTGRM_STATS_VERSN"       2983 rows imported
. . importing table        "SQLT$_DBA_IND_COLUMNS"         10 rows imported
. . importing table     "SQLT$_DBA_IND_PARTITIONS"        140 rows imported
. . importing table     "SQLT$_DBA_IND_STATISTICS"        150 rows imported
. . importing table "SQLT$_DBA_IND_STATS_VERSIONS"        298 rows imported
. . importing table            "SQLT$_DBA_INDEXES"         10 rows imported
. . importing table            "SQLT$_DBA_OBJECTS"        181 rows imported
. . importing table "SQLT$_DBA_OPTSTAT_OPERATIONS"        471 rows imported
. . importing table "SQLT$_DBA_PART_COL_STATISTICS"        196 rows imported
. . importing table    "SQLT$_DBA_PART_HISTOGRAMS"       2942 rows imported
. . importing table   "SQLT$_DBA_PART_KEY_COLUMNS"          6 rows imported
. . importing table           "SQLT$_DBA_SEGMENTS"        175 rows imported
. . importing table           "SQLT$_DBA_TAB_COLS"         40 rows imported
. . importing table     "SQLT$_DBA_TAB_HISTOGRAMS"        524 rows imported
. . importing table     "SQLT$_DBA_TAB_PARTITIONS"         28 rows imported
. . importing table     "SQLT$_DBA_TAB_STATISTICS"         31 rows imported
. . importing table "SQLT$_DBA_TAB_STATS_VERSIONS"         60 rows imported
. . importing table             "SQLT$_DBA_TABLES"          3 rows imported
. . importing table        "SQLT$_DBA_TABLESPACES"          6 rows imported
. . importing table             "SQLT$_DBMS_XPLAN"         66 rows imported
. . importing table      "SQLT$_GV$NLS_PARAMETERS"         19 rows imported



CHAPTER 11 ■ BUILDING GOOD TEST CASES

185

. . importing table          "SQLT$_GV$PARAMETER2"        345 rows imported

. . importing table       "SQLT$_GV$PARAMETER_CBO"        275 rows imported

. . importing table          "SQLT$_GV$PQ_SYSSTAT"         20 rows imported

. . importing table  "SQLT$_GV$PX_PROCESS_SYSSTAT"         15 rows imported

. . importing table    "SQLT$_GV$SYSTEM_PARAMETER"        344 rows imported

. . importing table                    "SQLT$_LOG"       1522 rows imported

. . importing table               "SQLT$_METADATA"        117 rows imported

. . importing table "SQLT$_NLS_DATABASE_PARAMETERS"         20 rows imported

. . importing table           "SQLT$_OUTLINE_DATA"         26 rows imported

. . importing table         "SQLT$_PLAN_EXTENSION"          9 rows imported

. . importing table              "SQLT$_PLAN_INFO"          6 rows imported

. . importing table         "SQLT$_SQL_PLAN_TABLE"          9 rows imported

. . importing table                "SQLT$_STATTAB"       3626 rows imported

. . importing table  "SQLT$_V$SESSION_FIX_CONTROL"        406 rows imported

. . importing table "SQLT$_WRI$_OPTSTAT_AUX_HISTORY"        243 rows imported
Import terminated successfully without warnings.
 
SQL> SET ECHO OFF;
 
4/7 Press ENTER to restore schema object stats for TC64661.
 

As you can see from the list of objects imported, step 3 has imported information captured by SQLT during the 
SQLTXTRACT and is now storing it in the SQLT repository. Then you are prompted to proceed to step 4, which  
will restore the statistics for the test case objects.

4. Press Enter to proceed to step 4. In step 4 we replace the data dictionary information for 
the test case from the SQLT repository. This is why the system you are doing this on has to 
be one that you can re-create. Here is what you see for step 4.

 
SQL> @@sqlt_s64661_restore.sql
SQL> REM Restores schema object stats for statement_id 64661 from local SQLT repository 
into data dictionary. Just execute "@sqlt_s64661_resore.sql" from sqlplus.
SQL> SPO sqlt_s64661_restore.log;
SQL> SET SERVEROUT ON;
SQL> EXEC sqltxplain.sqlt$a.import_cbo_stats(p_statement_id => 's64661', p_schema_owner =>  
'&&tc_user.', p_include_bk => 'N');
remapping stats into user TC64661(120)
obtain statistics staging table version for this system
statistics version for this system: 5
+-----+
upgrade/downgrade of sqli$_stattab_temp to version 5 as per this system
restoring cbo stats for table TC64661.COUNTRIES
restoring cbo stats for table TC64661.CUSTOMERS
restoring cbo stats for table TC64661.SALES
deleting conflicting rows from tables:
wri$_optstat_histgrm_history, _histhead_history, and _tab_history
deleting conflicting wri$_optstat_ind_history
restoring wri$_optstat_tab_history
restoring wri$_optstat_ind_history
restoring wri$_optstat_histhead_history
restoring wri$_optstat_histgrm_history
deleted 30 rows from wri$_optstat_tab_history



CHAPTER 11 ■ BUILDING GOOD TEST CASES

186

deleted 18 rows from wri$_optstat_ind_history
deleted 226 rows from wri$_optstat_histhead_history
deleted 0 rows from wri$_optstat_histgrm_history
restored 60 rows into wri$_optstat_tab_history
restored 298 rows into wri$_optstat_ind_history
restored 452 rows into wri$_optstat_histhead_history
restored 2983 rows into wri$_optstat_histgrm_history
+
|
|   Stats from id "s64661_snc1_locutus"
|   have been restored into data dict
|
|           METRIC   IN STATTAB  RESTORED  OK
|     -------------  ----------  --------  --
|       STATS ROWS:        3626      3626  OK
|           TABLES:           3         3  OK
|       TABLE PART:          28        28  OK
|    TABLE SUBPART:           0         0  OK
|          INDEXES:          10        10  OK
|       INDEX PART:         140       140  OK
|    INDEX SUBPART:           0         0  OK
|          COLUMNS:         498       498  OK
|      COLUMN PART:        2947      2947  OK
|   COLUMN SUBPART:           0         0  OK
|     AVG AGE DAYS:        14.5      14.5  OK
|
+
 
PL/SQL procedure successfully completed.
 
SQL> SET SERVEROUT OFF;
SQL> SPO OFF;
SQL> SET ECHO OFF;
 
5/7 Press ENTER to restore system statistics.
 

We just imported object statistics into TC64661 (from the repository) into the system so that they are the statistics 
for the test schema. At the end of this process we see that each object’s statistics were imported successfully, and then 
we are prompted to proceed to step 5.

5. Now in step 5 we delete the existing system statistics (did I mention that you do this only 
on a system you can replace with no production data and no other users?). Then the new 
values are set for the system statistics. Then you are prompted to proceed to step 6.

 
SQL> EXEC DBMS_STATS.DELETE_SYSTEM_STATS;
 
PL/SQL procedure successfully completed.
 
SQL> EXEC DBMS_STATS.SET_SYSTEM_STATS('CPUSPEEDNW', 1683.65129195846);
 
PL/SQL procedure successfully completed.
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

187

SQL> EXEC DBMS_STATS.SET_SYSTEM_STATS('IOSEEKTIM', 10);
 
PL/SQL procedure successfully completed.
 
SQL> EXEC DBMS_STATS.SET_SYSTEM_STATS('IOTFRSPEED', 4096);
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> SPO OFF;
SQL> SET ECHO OFF;
 
6/7 Press ENTER to connect as TC64661 and set CBO env.
 

6. In step 6 we connect as the test user. You see this line in the output
 

SQL> CONN &&tc_user./&&tc_user.
Connected.
SQL> @@sqlt_s64661_set_cbo_env.sql

The script sqlt_s64661_set_cbo_env.sql will set the CBO environment. It is an important and you will be 
prompted before you run it.

SQL> ALTER SESSION SET optimizer_features_enable = '11.2.0.1';
 
Session altered.
 
SQL>
SQL> SET ECHO OFF;
 
Press ENTER to execute ALTER SYSTEM/SESSION commands to set CBO env.
 

When you press Enter at this point, all of the CBO environment settings are set to those from the system where 
the SQL came from. In my case the log file contains the following at the top:
 
/*************************************************************************************/
SQL>
SQL> REM Non-Default or Modified Parameters
SQL>
SQL> -- enable modification monitoring. isdefault="TRUE" ismodified="SYSTEM_MOD"  
issys_modifiable="IMMEDIATE"
SQL> ALTER SYSTEM SET "_dml_monitoring_enabled" = TRUE SCOPE=MEMORY;
 
System altered.
 
SQL>
SQL> -- optimizer secure view merging and predicate pushdown/movearound. isdefault="TRUE" 
ismodified="SYSTEM_MOD" issys_modifiable="IMMEDIATE"
SQL> ALTER SYSTEM SET optimizer_secure_view_merging = TRUE SCOPE=MEMORY;
 
System altered.
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

188

SQL>
SQL> -- number of CPUs for this instance. isdefault="TRUE" ismodified="SYSTEM_MOD"  
issys_modifiable="IMMEDIATE"
SQL> ALTER SYSTEM SET cpu_count = 2 SCOPE=MEMORY;
 
System altered.
 
SQL> -- number of parallel execution threads per CPU. isdefault="TRUE" ismodified="SYSTEM_MOD" 
issys_modifiable="IMMEDIATE"
SQL> ALTER SYSTEM SET parallel_threads_per_cpu = 2 SCOPE=MEMORY;
 
System altered.
 
SQL>
SQL> -- Maximum size of the PGA memory for one process. isdefault="TRUE" ismodified="SYSTEM_MOD" 
issys_modifiable="IMMEDIATE"
SQL> ALTER SYSTEM SET "_pga_max_size" = 209715200 SCOPE=MEMORY;
 
System altered.
 
SQL>
SQL> -- optimizer use feedback. isdefault="TRUE" ismodified="SYSTEM_MOD"
SQL> ALTER SESSION SET "_optimizer_use_feedback" = TRUE;
 
Session altered.
 
SQL>
SQL> -- optimizer dynamic sampling. isdefault="TRUE" ismodified="SYSTEM_MOD"
SQL> ALTER SESSION SET optimizer_dynamic_sampling = 0;
 
Session altered.
 

Notice how we are changing system parameters. For example optimizer_dynamic_sampling is set 0. This is not 
the default, as we learned in chapter 8. Apart from non-default system parameters we also set the session parameters. 
Here is a section from the log file where we set a number of hidden session parameters:
 
SQL>
SQL> -- compute join cardinality using non-rounded input values
SQL> ALTER SESSION SET "_optimizer_new_join_card_computation" = TRUE;
 
Session altered.
 
SQL>
SQL> -- null-aware antijoin parameter
SQL> ALTER SESSION SET "_optimizer_null_aware_antijoin" = TRUE;
 
Session altered.
 
SQL> -- Use subheap for optimizer or-expansion
SQL> ALTER SESSION SET "_optimizer_or_expansion_subheap" = TRUE;
 
Session altered. 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

189

SQL>
SQL> -- Eliminates order bys from views before query transformation
SQL> ALTER SESSION SET "_optimizer_order_by_elimination_enabled" = TRUE;
 
Session altered.
 

Notice how in the preceding example hidden parameters are included. We even set the fix_control parameters, 
in the next example. The fix_control parameters control whether certain bug fixes (included with the database) are 
enabled or disabled. Here is a section from the fix control part of the log file (we’ll talk more about fix control in the 
next chapter).
 
SQL>
SQL> -- remove distribution method optimization for insert/update qbc (ofe 11.2.0.1) (event 0)
SQL> ALTER SESSION SET "_fix_control" = '6376551:1';
 
Session altered.
 
SQL>
SQL> -- Convert outer-join to inner-join if single set aggregate functio (ofe 11.1.0.7) (event 0)
SQL> ALTER SESSION SET "_fix_control" = '6377505:1';
 
Session altered.
At the end of step 6 we are prompted to execute the test case.
SQL> /*********************************
SQL>
SQL> SPO OFF;
SQL> SET ECHO OFF;
 
7/7 Press ENTER to execute test case.
 

7. In step 7 we finally get to execute the SQL from our test case. Executing the test case as the 
test case user will output the result of the query and then the execution plan for the query. 
The result in our example will look something like this.

 
SQL> @@tc.sql
SQL> REM Executes SQL on TC then produces execution plan. Just execute "@tc.sql" from sqlplus.
SQL> SET APPI OFF SERVEROUT OFF;
SQL> @@q.sql
SQL> REM $Header: 215187.1 sqlt_s64661_tc_script.sql 11.4.4.6 2012/12/13 carlos.sierra $
SQL>
SQL> select
  2   /* ^^unique_id */  country_name, sum(AMOUNT_SOLD)
  3  from sh.sales s, sh.customers c, sh.countries co
  4  where
  5    s.cust_id=c.cust_id
  6    and co.country_id=c.country_id
  7    and country_name in (
  8      'Ireland','Denmark','Poland','United Kingdom',
  9       'Germany','France','Spain','The Netherlands','Italy')
 10    group by country_name order by sum(AMOUNT_SOLD);

 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

190

COUNTRY_NAME                             SUM(AMOUNT_SOLD)
---------------------------------------- ----------------
Poland                                            8447.14
Denmark                                        1977764.79
Spain                                          2090863.44
France                                         3776270.13
Italy                                          4854505.28
United Kingdom                                 6393762.94
Germany                                        9210129.22
 
7 rows selected.
 
SQL> @@plan.sql
SQL> REM Displays plan for most recently executed SQL. Just execute "@plan.sql" from sqlplus.
SQL> SET PAGES 2000 LIN 180;
SQL> SPO plan.txt;
SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------
---------------------------------------
SQL_ID  0zskj9bd07jdy, child number 0
-------------------------------------
select  /* ^^unique_id */  country_name, sum(AMOUNT_SOLD) from sh.sales
s, sh.customers c, sh.countries co where   s.cust_id=c.cust_id   and
co.country_id=c.country_id   and country_name in (
'Ireland','Denmark','Poland','United Kingdom',
'Germany','France','Spain','The Netherlands','Italy')   group by
country_name order by sum(AMOUNT_SOLD)
 
Plan hash value: 2938593747
----------------------------------------------------------------------------------------
|Id |Operation              |Name     |Rows  |Bytes |Cost(%CPU)|Time    |Pstart| Pstop |
----------------------------------------------------------------------------------------
0	SELECT STATEMENT				947(100)			
1	SORT ORDER BY		9	315	947  (7)	00:00:12		
2	HASH GROUP BY		9	315	947  (7)	00:00:12		
* 3	HASH JOIN		435K	14M	909  (3)	00:00:11		
* 4	HASH JOIN		26289	641K	409  (1)	00:00:05		
* 5	TABLE ACCESS FULL	COUNTRIES	9	135	3  (0)	00:00:01		
6	TABLE ACCESS FULL	CUSTOMERS	55500	541K	406  (1)	00:00:05		
7	PARTITION RANGE ALL		918K	8973K	494  (3)	00:00:06	1	28
8	TABLE ACCESS FULL	SALES	918K	8973K	494  (3)	00:00:06	1	28
----------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("S"."CUST_ID"="C"."CUST_ID")
   4 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   5 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR



CHAPTER 11 ■ BUILDING GOOD TEST CASES

191

              "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR "COUNTRY_NAME"='Italy' OR
               "COUNTRY_NAME"='Poland' OR "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"= 

'The Netherlands' OR
              "COUNTRY_NAME"='United Kingdom'))

Notice how in my case there are results from the query because I retained the schema name in the SQL, and the 
data happened to exist on the system in the same schema. This would not normally be the case, and the result of the 
query is usually to return no data but with the same execution plan. Let me repeat that. The test case can work, with 
the same execution plan and with no data. The CBO only works based on what the statistics say about the tables, and 
we replaced that statistical data during the import steps. Since normally there is no data in your test case system you 
will get an output such as this (here I have replaced sh.sales, sh.countries, and sh.customers with sales, countries and 
customers, as these tables now exist in the test case schema (but with no data in them). 

SQL> @tc
SQL> REM Executes SQL on TC then produces execution plan. Just execute "@tc.sql" from sqlplus.
SQL> SET APPI OFF SERVEROUT OFF;
SQL> @@q.sql
SQL> REM $Header: 215187.1 sqlt_s64661_tc_script.sql 11.4.4.6 2012/12/13 carlos.sierra $
SQL>
SQL>
SQL> select
  2   /* ^^unique_id */  country_name, sum(AMOUNT_SOLD)
  3  from sales s, customers c, countries co
  4  where
  5    s.cust_id=c.cust_id
  6    and co.country_id=c.country_id
  7    and country_name in (
  8      'Ireland','Denmark','Poland','United Kingdom',
  9       'Germany','France','Spain','The Netherlands','Italy')
 10    group by country_name order by sum(AMOUNT_SOLD);

no rows selected <<<No Data was returned. There is none.

SQL> @@plan.sql
SQL> REM Displays plan for most recently executed SQL. Just execute "@plan.sql" from sqlplus.
SQL> SET PAGES 2000 LIN 180;
SQL> SPO plan.txt;
SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------
SQL_ID  f43bszax8xh07, child number 0
-------------------------------------
select  /* ^^unique_id */  country_name, sum(AMOUNT_SOLD) from sales s,
customers c, countries co where   s.cust_id=c.cust_id   and
co.country_id=c.country_id   and country_name in (
'Ireland','Denmark','Poland','United Kingdom',
'Germany','France','Spain','The Netherlands','Italy')   group by
country_name order by sum(AMOUNT_SOLD)



CHAPTER 11 ■ BUILDING GOOD TEST CASES

192

Plan hash value: 2938593747
----------------------------------------------------------------------------------------
|Id |Operation              |Name     |Rows  |Bytes |Cost(%CPU)|Time    |Pstart| Pstop |
----------------------------------------------------------------------------------------
0	SELECT STATEMENT				947(100)			
1	SORT ORDER BY		9	315	947  (7)	00:00:12		
2	HASH GROUP BY		9	315	947  (7)	00:00:12		
* 3	HASH JOIN		435K	14M	909  (3)	00:00:11		
* 4	HASH JOIN		26289	641K	409  (1)	00:00:05		
* 5	TABLE ACCESS FULL	COUNTRIES	9	135	3  (0)	00:00:01		
6	TABLE ACCESS FULL	CUSTOMERS	55500	541K	406  (1)	00:00:05		
7	PARTITION RANGE ALL		918K	8973K	494  (3)	00:00:06	1	28
8	TABLE ACCESS FULL	SALES	918K	8973K	494  (3)	00:00:06	1	28
----------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("S"."CUST_ID"="C"."CUST_ID")
   4 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   5 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
 

Now we have reached that point in the test case where we can do some work on exploring the set up of the 
environment and changing things to see what we can achieve or to see how the SQL, under the microscope can be 
influenced to do what we want.

Exploring the Execution Plan
Now that we have a test case, we can explore the execution plan by changing all those things that can affect the 
execution plan. I’ve listed some of them below:

Optimizer parameters•

SQL hints•

Optimizer versions•

Structure of the SQL•

Adding or removing indexes•

System statistics•

Object Statistics•

Of these environmental factors, the last two require the setting of object statistics through routines. Setting object 
statistics can be done but is beyond the scope of this book. System statistics can also be set and tested; but again, this 
is not generally a test that is carried out because it implies you are planning for a different machine. (I give a short 
example of this at the end of the section.) The things most commonly explored using the test case are optimizer 
parameters and the structure of the SQL.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

193

While this kind of testing can be done in other ways (set autotrace, EXPLAIN PLAN, etc.), setting up the 
environment can be time consuming and tricky. Even if you do set up an environment to be a duplicate of another 
environment, how will you know you’ve got everything right? The optimizer works the same way and produces an 
execution plan when you test. With a SQLT test case everything is brought in, and nothing is missing. You get the 
environment right every time. If you copy the data you will also have a very similar copy of the source environment. 
An additional advantage of this method of working is that the system environment can also be changed.

Optimizer Parameters
If a developer comes to you and says my SQL would work fine if optimizer_index_cost_adj was set to 10, you can 
now test the suggestion with a test case in your own test environment. Of course, good (or bad) suggestions for tuning 
can come from any source; the point here is that you can take a suggestion, put it through the optimizer via the test 
case you built, and see what the cost and execution plan will be. Below we see such an example. Notice that I am 
setting the optimizer parameter at the session level, but this would normally be a pre-cursor to setting the parameter 
at the system level. By the way I would not suggest you make changes like this on a real system without extensive 
testing, there is too much scope for other SQL to be affected by changes like this. This is an exploration of what the 
optimizer might be able to do for us if the environment were different. So here’s the result.
 
Plan hash value: 2917593948
 
------------------------------------------------------------------------------------------------
|Id |Operation                             |Name                |Rows |Cost(%CPU)|Pstart|Pstop |
------------------------------------------------------------------------------------------------
0	SELECT STATEMENT			593(100)		
1	SORT ORDER BY		9	593 (12)		
2	HASH GROUP BY		9	593 (12)		
* 3	HASH JOIN		435K	555  (6)		
* 4	HASH JOIN		26289	243  (2)		
* 5	TABLE ACCESS FULL	COUNTRIES	9	3  (0)		
6	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	55500	239  (1)		
7	BITMAP CONVERSION TO ROWIDS					
8	BITMAP INDEX FULL SCAN	CUSTOMERS_GENDER_BIX				
9	PARTITION RANGE ALL		918K	306  (7)	1	28
10	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	918K	306  (7)	1	28
11	BITMAP CONVERSION TO ROWIDS					
12	BITMAP INDEX FULL SCAN	SALES_PROMO_BIX			1	28
------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("S"."CUST_ID"="C"."CUST_ID")
   4 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   5 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

194

In this example, I’ve removed some of the execution plan columns for clarity. We can see that the cost has gone 
down from 947 to 593. Let me emphasize this next point, as it is very important. This does not mean that changing 
optimizer_index_cost_adj is a good idea: rather, this means that if the optimizer environment were set correctly 
the optimizer could choose a better plan. The next step in this scenario would be to investigate why the optimizer 
is choosing a sub-optimal plan. The important fact to remember here is that the test case allows you to confirm that 
there is a better plan.

Adding and Removing Hints
In my previous example we saw that setting session parameters can change the execution plan and that on our test 
system we can see those changes without having all the data. We saw that setting optimizer_index_cost_adj made 
a difference and that maybe we need an index hint to help. So setting optimizer_index_cost_adj back to the default 
value of 100, and then at random I selected the index SALES_CUST_BIX (which we’ll see wasn’t a good choice).  
I modify the SQL to include the hint /*+ INDEX(S SALES_CUST_BIX) */ and run tc.sql. The result in my case is:
 
---------------------------------------------------------------------
|Id |Operation                            |Name          |Cost(%CPU)|
---------------------------------------------------------------------
0	SELECT STATEMENT		3787(100)
1	SORT ORDER BY		3787  (2)
2	HASH GROUP BY		3787  (2)
*3	HASH JOIN		3749  (1)
*4	HASH JOIN		409  (1)
*5	TABLE ACCESS FULL	COUNTRIES	3  (0)
6	TABLE ACCESS FULL	CUSTOMERS	406  (1)
7	PARTITION RANGE ALL		3334 (1)
8	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	3334 (1)
9	BITMAP CONVERSION TO ROWIDS		
10	BITMAP INDEX FULL SCAN	SALES_CUST_BIX	
---------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("S"."CUST_ID"="C"."CUST_ID")
   4 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   5 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
 

Again, I’ve removed some columns from the execution plan display to emphasize the important columns. We see 
in this example that the cost has increased, and so we decide that this hint is not helpful to us. The steps to check the 
effect of this hint are to modify q.sql (add the hint) and run tc.sql. Nothing more is needed.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

195

Versions of the optimizer
Suppose we upgraded or transferred SQL from version 10g to version 11g. We think that maybe the execution plan 
changed between these two versions. We can test this idea by changing optimizer_features_enable to '10.2.0.5'. 
Then we can do that easily and simply by setting the parameter at the session level and retesting.

The steps to carry out this test are:
 
SQL> alter session set optimizer_features_enable='10.2.0.5';
SQL> @tc
 

In this case we see that the execution plan is unchanged, but in other cases we may see some changes, usually  
the better execution plan is from 11g although not always. Remember that optimizer_features_enable is like a  
super-switch that sets a number of features in the database on or off. Setting this parameter to a value that was there  
before the feature was introduced can turn off any new features. For example, you could disable SQL Plan management 
by setting this parameter to 10.2.0.5, a version of the database that existed when this feature was not present. This is  
not a recommended solution to any particular problem, but will help in giving the developer or DBA a clue, if it improves 
a particular SQL, that the solution may lie in investigating one of the new features introduced in the later version.  
As the optimizer_features_enable parameter made no difference we set it back to 11.2.0.1.

Structure of the SQL
The test case once built allows you to investigate the target SQL in many ways, including changing the SQL itself, as 
long as your SQL does not include any new tables (which were not captured by XTRACT) you could test the SQL in the 
same way. In this example I changed the SQL from
 
select /*+ INDEX(S SALES_CUST_BIX) */
  country_name, sum(AMOUNT_SOLD)
from sales s, customers c, countries co
where
  s.cust_id=c.cust_id
  and co.country_id=c.country_id
  and country_name in ('Ireland','Denmark','Poland',
  'United Kingdom','Germany','France','Spain','The Netherlands','Italy')
  group by country_name order by sum(AMOUNT_SOLD);
 

to
 
select /*+ INDEX(S SALES_CUST_BIX) */
  country_name, sum(AMOUNT_SOLD)
from sales s, customers c, countries co
where
  s.cust_id=c.cust_id
  and co.country_id=c.country_id
  and country_name in ( select country_name from sh.countries where
  country_name in ('Ireland','Denmark','Poland',
  'United Kingdom','Germany','France','Spain','The Netherlands','Italy'))
  group by country_name order by sum(AMOUNT_SOLD);
 

In this case there was no change to the execution plan, the optimizer used a query optimization feature (as we 
discussed in Chapter 5), to give us the same execution plan. So we can remove this change and try some changes  
to the indexes.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

196

Indexes
We currently are using an index due to this hint /*+ INDEX(S SALES_CUST_BIX) */

We see that the execution plan looks like this:
 
--------------------------------------------------------------------------------------------
|Id |Operation                              |Name          |Rows |Cost(%CPU)|Pstart| Pstop |
--------------------------------------------------------------------------------------------
0	SELECT STATEMENT			3793(100)		
1	SORT ORDER BY		9	3793  (2)		
2	HASH GROUP BY		9	3793  (2)		
* 3	HASH JOIN RIGHT SEMI		435K	3755  (1)		
* 4	TABLE ACCESS FULL	COUNTRIES	9	3  (0)		
* 5	HASH JOIN		435K	3749  (1)		
* 6	HASH JOIN		26289	409  (1)		
* 7	TABLE ACCESS FULL	COUNTRIES	9	3  (0)		
8	TABLE ACCESS FULL	CUSTOMERS	55500	406  (1)		
9	PARTITION RANGE ALL		918K	3334  (1)	1	28
10	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	918K	3334  (1)	1	28
11	BITMAP CONVERSION TO ROWIDS					
12	BITMAP INDEX FULL SCAN	SALES_CUST_BIX			1	28
--------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("COUNTRY_NAME"="COUNTRY_NAME")
   4 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland'  OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
   5 - access("S"."CUST_ID"="C"."CUST_ID")
   6 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   7 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
 

But we suspect that the index use was a bad idea, so we want to disable it without changing the code. 
 
SQL> alter index sales_cust_bix invisible;
SQL> @tc



CHAPTER 11 ■ BUILDING GOOD TEST CASES

197

------------------------------------------------------------------------------------------------
|Id |Operation                              |Name           | Rows  |Cost(%CPU)| Pstart| Pstop |
------------------------------------------------------------------------------------------------
0	SELECT STATEMENT			3347(100)		
1	SORT ORDER BY		9	3347  (3)		
2	HASH GROUP BY		9	3347  (3)		
* 3	HASH JOIN RIGHT SEMI		435K	3309  (1)		
* 4	TABLE ACCESS FULL	COUNTRIES	9	3  (0)		
* 5	HASH JOIN		435K	3303  (1)		
* 6	HASH JOIN		26289	409  (1)		
* 7	TABLE ACCESS FULL	COUNTRIES	9	3  (0)		
8	TABLE ACCESS FULL	CUSTOMERS	55500	406  (1)		
9	PARTITION RANGE ALL		918K	2889  (1)	1	28
10	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	918K	2889  (1)	1	28
11	BITMAP CONVERSION TO ROWIDS					
12	BITMAP INDEX FULL SCAN	SALES_PROMO_BIX			1	28
------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("COUNTRY_NAME"="COUNTRY_NAME")
   4 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR "COUNTRY_NAME"='Germany' OR
               "COUNTRY_NAME"='Ireland' OR "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR 

"COUNTRY_NAME"='Spain' OR
              "COUNTRY_NAME"='The Netherlands' OR "COUNTRY_NAME"='United Kingdom'))
   5 - access("S"."CUST_ID"="C"."CUST_ID")
   6 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   7 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR "COUNTRY_NAME"='Germany' OR
               "COUNTRY_NAME"='Ireland' OR "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR  

"COUNTRY_NAME"='Spain' OR
              "COUNTRY_NAME"='The Netherlands' OR "COUNTRY_NAME"='United Kingdom'))
 

As expected the index sales_cust_bix is no longer being used. We now see a different execution plan, which 
looks slightly better (cost 3347 compared to the previous 3793). Finally we remove the hint and decide that we need a 
machine twice as powerful to get a better elapsed time.

Setting System Statistics
As an example of the power of setting system statistics, I’ll carry out the steps to do this to my test rig. If you wanted to 
do something similar to your throwaway test environment to make it similar to another environment, you could get 
the system statistics and set them manually as I am going to do in this example. From the example above our best cost 
so far was 947. We also know that our source machine (my ancient laptop) had a CPU speed of 1683 MHz and I/O seek 
time of 10ms and an I/O transfer speed of 4096. In this example I’ll set the CPU speed to 10 times the current value:
 
SQL> EXEC DBMS_STATS.SET_SYSTEM_STATS('CPUSPEEDNW', 16830.00);
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

198

Then when we next run the test case (after flushing the shared Pool) we get this execution plan:
 
------------------------------------------------------------------------------------------------
|Id  |Operation              |Name     | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
------------------------------------------------------------------------------------------------
0	SELECT STATEMENT				897 (100)			
1	SORT ORDER BY		9	315	897   (2)	00:00:11		
2	HASH GROUP BY		9	315	897   (2)	00:00:11		
* 3	HASH JOIN		435K	14M	891   (1)	00:00:11		
* 4	HASH JOIN		26289	641K	408   (1)	00:00:05		
* 5	TABLE ACCESS FULL	COUNTRIES	9	135	3   (0)	00:00:01		
6	TABLE ACCESS FULL	CUSTOMERS	55500	541K	404   (0)	00:00:05		
7	PARTITION RANGE ALL		918K	8973K	482   (1)	00:00:06	1	28
8	TABLE ACCESS FULL	SALES	918K	8973K	482   (1)	00:00:06	1	28
------------------------------------------------------------------------------------------------
 

Please note that in this case the plan has not changed; however, what we do see is that the elapsed time has been 
reduced slightly from 12 seconds to 11 seconds and that the cost has been reduced slightly. Most of the cost of the 
query is in the I/O, and the CPU is not crucial to the execution time. We could conclude from this that if we wanted 
a bigger better laptop, that a much more important parameter to pay attention to would be the transfer speed of 
the disks rather than the speed of the CPU (as far as this query is concerned, of course). Playing around in your test 
environment with settings like this can allow you to discover what is important in your environment for improving 
performance and save time by allowing you to concentrate on what is important and ignore what is less important.

Object Statistics 
You can set object statistics for all the objects in the query also, but this is a tricky operation and not recommended for 
this kind of exploration. You are better off looking at the 10053 trace file to see why your costs are the way they are than 
by changing the costs to see what happens.

Debugging the Optimizer
Creating and using a test case is mostly something that you should expect Oracle support to do on your behalf. They 
will take the test case files that you supply and explore them sufficiently to be able to solve your problem. You can also 
use the test case files (as I’ve described above) to do some testing in a free-standing test environment that nobody 
else is using. The test case routines are mostly used to explore the behavior of the optimizer. Everything in the test 
case files is designed to make the optimizer think it is on the original source system. If there is a bug that causes 
the optimizer to change its execution plan in an inappropriate way, then a test case is what Oracle support will use 
possibly in conjunction with your data to determine if there is a true bug or some unexpected behavior that is not a 
bug. Sometimes in rare cases some particular execution plan can cause a bug to be exposed, and in these cases you 
can sometimes avoid the bug by setting some optimizer environmental factor.

Other Test Case Utilities
As if the ability to explore your SQL in a stand-alone test environment isn’t enough, SQLT provides further utilities 
for understanding what’s happening in any particular SQL. Sometimes you want to do more than just change 
environmental settings and retry your query. Just like a dependable Swiss Army knife of tuning, SQLT has a tool for 
nearly every job.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

199

What Does sel.sql Do?
Sel is a nice little utility that you would probably write if it wasn’t already written for you. Here is the code for sel.sql:
 
REM Computes predicate selectivity using CBO. Requires sel_aux.sql.
SPO sel.log;
SET ECHO OFF FEED OFF SHOW OFF VER OFF;
PRO
COL table_rows NEW_V table_rows FOR 999999999999;
COL selectivity FOR 0.000000000000 HEA "Selectivity";
COL e_rows NEW_V e_rows FOR 999999999999 NOPRINT;
ACC table PROMPT 'Table Name: ';
SELECT num_rows table_rows FROM user_tables WHERE table_name = UPPER(TRIM('&&table.'));
@@sel_aux.sql
 

This routine prompts for the table to be accessed after setting up the column formats and then calls sel_aux.sql:
 
REM Computes predicate selectivity using CBO. Requires sel.sql.
PRO
ACC predicate PROMPT 'Predicate for &&table.: ';
DELETE plan_table;
EXPLAIN PLAN FOR SELECT /*+ FULL(t) */ COUNT(*) FROM &&table. t WHERE &&predicate.;
SELECT MAX(cardinality) e_rows FROM plan_table;
SELECT &&e_rows. "Comp Card", ROUND(&&e_rows./&&table_rows., 12) selectivity FROM DUAL;
@@sel_aux.sql
 

sel_aux.sql uses explain plan to determine the cardinality and selectivity by selecting this information from 
the plan_table populated by explain plan. It displays the computed cardinality and selectivity for any particular 
predicate and table in the test case. At the end of the routine sel_aux is called again to give a chance to select 
a different value for a predicate or a different predicate entirely. So if you were looking at problems regarding a 
particular value you might want to test cardinality by using sel.sql. In the example below I choose the SALES table to 
investigate, and I’m interested in the cardinality of a query against SALES where the CUST_ID is 100 and 200.
 
SQL> @sel
 
Table Name: sales
 
   TABLE_ROWS
-------------
       918843
 
Predicate for sales: cust_id=100
 
 Comp Card     Selectivity
---------- ---------------
       130  0.000141482277
 
Predicate for sales: cust_id=200
 
 Comp Card     Selectivity
---------- ---------------
       130  0.000141482277
 



CHAPTER 11 ■ BUILDING GOOD TEST CASES

200

Predicate for sales: cust_id between 100 and 300
 
 Comp Card     Selectivity
---------- ---------------
      2080  0.002263716435
 
Predicate for sales:
 

I can see that the statistics estimate that the cardinality for SALES for CUST_ID is 130. The same value is seen for 
cust_id=200. Since I also have the data on this system I can see what the actual values are.
 
SQL> select count(*) From sh.sales where cust_id=100;
 
  COUNT(*)
----------
        30
 
SQL> select count(*) From sh.sales where cust_id=200;
 
  COUNT(*)
----------
        68
 
SQL> select count(*) From sh.sales where cust_id between 100 and 300;
 
  COUNT(*)
----------
     18091
 

Notice that each of the estimates is wrong. The estimates are so far off that using the BETWEEN clause gives me 
an estimate of 2,080, whereas the actual value is 18,091. We can see from this that the statistics on the objects need to 
be improved. Perhaps a histogram on the CUST_ID column would help here.

What Does sqlt_snnnnn_del_hgrm.sql Do?
Often histograms can cause a problem, if they are not properly sampled or are inappropriately used. In such cases, 
with the test case utility you can try deleting the histograms to see what the effect on the execution plan is. In this 
example we delete all the histograms registered against the test schema.
 
SQL> @sqlt_s64661_del_hgrm.sql
Enter value for tc_user: TC64661
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.C1
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.C2
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.C3
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.C4
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.C5
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.CH1
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.D1
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.FLAGS
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N1
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N10
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N11
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N12
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N2



CHAPTER 11 ■ BUILDING GOOD TEST CASES

201

delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N3
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N4
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N5
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N6
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N7
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N8
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.N9
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.STATID
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.TYPE
delete_column_hgrm: TC64661.CBO_STAT_TAB_4TC.<partname>.VERSION
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_ID
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_ISO_CODE
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_NAME
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_NAME_HIST
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_REGION
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_REGION_ID
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_SUBREGION
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_SUBREGION_ID
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_TOTAL
delete_column_hgrm: TC64661.COUNTRIES.<partname>.COUNTRY_TOTAL_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.COUNTRY_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_CITY
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_CITY_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_CREDIT_LIMIT
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_EFF_FROM
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_EFF_TO
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_EMAIL
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_FIRST_NAME
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_GENDER
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_INCOME_LEVEL
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_LAST_NAME
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_MAIN_PHONE_NUMBER
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_MARITAL_STATUS
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_POSTAL_CODE
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_SRC_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_STATE_PROVINCE
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_STATE_PROVINCE_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_STREET_ADDRESS
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_TOTAL
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_TOTAL_ID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_VALID
delete_column_hgrm: TC64661.CUSTOMERS.<partname>.CUST_YEAR_OF_BIRTH
delete_column_hgrm: TC64661.SALES.<partname>.AMOUNT_SOLD
delete_column_hgrm: TC64661.SALES.<partname>.CHANNEL_ID
delete_column_hgrm: TC64661.SALES.<partname>.CUST_ID
delete_column_hgrm: TC64661.SALES.<partname>.PROD_ID
delete_column_hgrm: TC64661.SALES.<partname>.PROMO_ID
delete_column_hgrm: TC64661.SALES.<partname>.QUANTITY_SOLD
delete_column_hgrm: TC64661.SALES.<partname>.TIME_ID

PL/SQL procedure successfully completed.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

202

In this case there was no difference in the execution plan, so we know that the histograms make no difference for 
this query. We cannot of course go back to the target system and delete the histograms because there could be other 
SQL that relies on those histograms to execute effectively.

What Does sqlt_snnnnn_tcx.zip Do?
In the latest version of SQLT you can create test cases that have no dependence on SQLT on the target platform. 
In other words, once you have run SQLTXECUTE or SQLTXTRACT you can take the test case (as described in the 
sections above) and use the sqlt_snnnnn_tcx.zip file to create a test case on the target platform and not be reliant 
on SQLT being installed on that database. In this section I’ll use the same SQL as before to create a test case on a new 
database that has no SQLT installed on it. As usual I have put the files from this zip file into a sub-directory. Now on 
my new standard database I’ll install the test case with the install.sql script provided in the list of files. Here is the 
list of files in the sqlt_s11996_tcx directory I created. 
 
12/29/2012  09:59 AM               132 10053.sql
12/29/2012  09:59 AM               103 flush.sql
12/29/2012  09:59 AM               118 install.sh
12/29/2012  09:59 AM               960 install.sql
12/29/2012  09:59 AM             2,911 pack_tcx.sql
12/29/2012  10:03 AM             2,209 plan.log
12/29/2012  09:59 AM               279 plan.sql
12/29/2012  09:50 AM               324 q.sql
12/29/2012  09:59 AM               424 sel.sql
12/29/2012  09:59 AM               378 sel_aux.sql
12/29/2012  09:59 AM         1,193,984 sqlt_s11996_exp2.dmp
12/29/2012  10:02 AM               596 sqlt_s11996_imp2.log
12/29/2012  10:02 AM            44,263 sqlt_s11996_metadata1.log
12/29/2012  09:59 AM            29,223 sqlt_s11996_metadata1.sql
12/29/2012  10:02 AM           106,511 sqlt_s11996_metadata2.log
12/29/2012  09:59 AM            95,604 sqlt_s11996_metadata2.sql
12/29/2012  10:02 AM             3,272 sqlt_s11996_schema_stats.log
12/29/2012  09:59 AM             2,174 sqlt_s11996_schema_stats.sql
12/29/2012  10:03 AM           109,835 sqlt_s11996_set_cbo_env.log
12/29/2012  09:59 AM            84,672 sqlt_s11996_set_cbo_env.sql
12/29/2012  10:02 AM             1,658 sqlt_s11996_system_stats.log
12/29/2012  09:59 AM             1,285 sqlt_s11996_system_stats.sql
12/29/2012  09:59 AM           103,448 sqlt_s11996_tcx.zip
12/29/2012  09:59 AM               141 tc.sql
 

All of these files are recognizable from the TC files we saw earlier. The new interesting file for us is install.sql, 
which installs the test case in our new database. If we run this script we see the final page as shown below, where the 
test case user (in this case TC11996) has been created and the test SQL run.
 
------------------------
EXPLAINED SQL STATEMENT:
------------------------
select   country_name, sum(AMOUNT_SOLD) from sales s, customers c,
countries co where   s.cust_id=c.cust_id   and
co.country_id=c.country_id   and country_name in
('Ireland','Denmark','Poland','United
Kingdom','Germany','France','Spain','The Netherlands','Italy')   group



CHAPTER 11 ■ BUILDING GOOD TEST CASES

203

by country_name order by sum(AMOUNT_SOLD)
Plan hash value: 2938593747
-----------------------------------------------------------------
| Id  | Operation              | Name      | Rows  | Cost (%CPU)|
-----------------------------------------------------------------
0	SELECT STATEMENT			947 (100)
1	SORT ORDER BY		9	947   (7)
2	HASH GROUP BY		9	947   (7)
*  3	HASH JOIN		435K	909   (3)
*  4	HASH JOIN		26289	409   (1)
*  5	TABLE ACCESS FULL	COUNTRIES	9	3   (0)
6	TABLE ACCESS FULL	CUSTOMERS	55500	406   (1)
7	PARTITION RANGE ALL		918K	494   (3)
8	TABLE ACCESS FULL	SALES	918K	494   (3)
-----------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   3 - access("S"."CUST_ID"="C"."CUST_ID")
   4 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")
   5 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR
               "COUNTRY_NAME"='Germany' OR "COUNTRY_NAME"='Ireland' OR
               "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland' OR
               "COUNTRY_NAME"='Spain' OR "COUNTRY_NAME"='The Netherlands' OR
               "COUNTRY_NAME"='United Kingdom'))
36 rows selected.
SQL> SPO OFF;
SQL> show user
USER is "TC11996"
 

This database is completely fresh. There is no SH schema (I dropped the schema after creation of the database) or 
SQLT schema (I never installed SQLT on this database). All the schemas are the standard accounts, and yet if I log in  
as TC11996 I can execute my test case and do all the things to try and improve the execution plan as I would normally 
be able to do with SQLT. There is one additional wrinkle to TCX that is sometimes useful. There is a file called  
pack_tcx.sql that allows you to pack the test case even more tightly. If you run this file a new zip file is produced 
called tcx.zip, which contains the files shown below (some of these file names will be different in your case).
 
12/29/2012  09:59 AM               132 10053.sql
12/29/2012  09:59 AM               103 flush.sql
12/29/2012  09:59 AM               279 plan.sql
12/29/2012  09:50 AM               324 q.sql
12/29/2012  10:29 AM                74 readme.txt
12/29/2012  10:29 AM             1,447 setup.sql
12/29/2012  09:59 AM            95,604 sqlt_s11996_metadata2.sql
12/29/2012  09:59 AM            84,672 sqlt_s11996_set_cbo_env.sql
12/29/2012  09:59 AM             1,285 sqlt_s11996_system_stats.sql
12/29/2012  10:30 AM         1,136,640 TC11996_expdat.dmp
 

These files are automatically unzipped (by pack_tcx.sql). This time we run just setup.sql as sys and the test 
case user is created. While these extra options to create test cases may seem a little redundant when you have SQLT 
already installed (and I encourage you to do this), these increasingly smaller test cases that show your problem SQL 
and execution plan are extremely helpful when trying to convince someone (for example, Oracle support) that you 
have a problem. The fewer extraneous details included in your test case (as long as it still shows the problem) the 
better it is for trying to solve the problem.



CHAPTER 11 ■ BUILDING GOOD TEST CASES

204

Including Test Case Data
SQLT test cases do not by default include application data. This is because the problem (1) has nothing to do with the 
application data, (2) there is too much data or (3) the data is privileged in some way and cannot be shown to anyone 
else. In some rare cases data may be required to show the problem. Luckily SQLT has an option to allow this as long as 
the other hurdles can be overcome. In the later versions of SQLT you can do it like this:
 
SQL> EXEC SQLTXADMIN.sqlt$a.set_param('tcb_export_data', 'TRUE');
 
PL/SQL procedure successfully completed.
 

In the older versions of SQLT, find this section of code in the sqcpkgi.pkb file in the install directory and change 
the FALSE to TRUE. This is what the code fragment looks like before it is changed:
 
EXECUTE IMMEDIATE
  'BEGIN DBMS_SQLDIAG.EXPORT_SQL_TESTCASE ( '||
  'directory     => :directory, '||
  'sql_id        => :sql_id, '||
  'exportData    => FALSE , '||  <<<Change this to TRUE
  'timeLimit     => :timeLimit, '||
  'testcase_name => :testcase_name, '||
  'testcase      => :testcase ); END;'
 
Then rebuild this package
SQL> @sqcpkgi.pkb
 
Package body created.
 
No errors.
 

Once you’ve selected this option you can run sqltxecute.sql (or sqltxtract.sql) and collect a test case that 
contains application data. All the set up steps are exactly the same after this, you run xpress.sql and follow the steps 
outlined in previous sections.

Summary
I hope you’ve enjoyed looking at the features of the test case utility with me. They are powerful and flexible. They are 
also the beginning of a new world of tuning. Once you have a test case you can change (on a stand-alone system) you 
can endlessly explore the CBO environment looking for the best performance. As your knowledge of SQL and tuning 
concepts increases you will be able to try more and more methods to improve the execution plan. Your bedrock in all 
these endeavors will be SQLTXPLAIN’s test case utility. In the next chapter we’ll look at a way you can use the test case 
to find a solution to a problem. With the XPLORE method you’ll use a sledgehammer to crack a nut.



205

CHAPTER 12

Using XPLORE to Investigate 
Unexpected Plan Changes

I’m sure by now you’re thinking that SQLTXPLAIN is a pretty cool tool to be familiar with, if you want to tune Oracle 
SQL. In Chapter 11 we discussed the test case utility and how that could build an entire environment for testing SQL, 
system parameter, optimizer settings, objects statistics, enough of the settings in fact to make the optimizer behave 
as if it was on the source system. Once you achieve that state you have a superb environment to go exploring the 
optimizer’s choices. This intelligent, directed approach is extremely fruitful when you have a rough idea what the 
problem might be and you suspect that you are only a few changes away from the solution. In those kinds of situations 
you can create the test case, try your changes, and test the result. This is a good way to solve tuning problems, but 
what if you had no idea what had caused a regression to some SQL after an upgrade or patch to Oracle or if a SQL 
plan changed unexpectedly. Then what could you do? There are hundreds of parameter changes you could try, but 
it would take far too long to go through them all. On the other hand, computers are pretty good at churning through 
hundreds of choices to find the best one, and this is exactly what XPLORE does.

When Should You Use XPLORE?
The XPLORE method was designed with one purpose in mind: to do a brute force attack on an SQL statement by 
trying every choice of parameter and then presenting you with the answers. Even though XPLORE can explore many 
changes to the optimizer environment, it was designed with one specific goal: to find bugs caused by upgrades and 
patches to the Oracle engine. It is not designed to tune SQL directly, as there are adequate features in other parts of 
SQLT to deal with that scenario. Nonetheless, it can still be used in a non-upgrade situation if you’ve run out of ideas 
and need a hint or if you’ve hit a bug on a new SQL and you think a fix control change may help. It is designed to deal 
with situations where an upgrade has occurred and the system works just fine, except for one or two SQLs that for 
some unspecified reason have regressed. In this scenario it is possible that some feature upgrade of the Oracle engine 
has caused a specific SQL to no longer be optimal. Generally speaking SQL performance improves from version to 
version, but with every version upgrade if 1000s of SQL statements improve maybe one or two will be worse off. If 
those one or two SQL happen to be crucial to your operation, you’ll need XPLORE to find the reason. Can you use 
XPLORE to tune statements that just need some tuning? It’s possible that if you ran XPLORE, and it came up with 
some parameter changes that might be beneficial, those changes might give you some ideas for improvements.  
But it’s generally not the best use of XPLORE.



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

206

How Does XPLORE Work?
XPLORE relies on a working test case (as described in Chapter 11). You must have used XECUTE or XTRACT to create 
a zip file that contains a test case file. Once you have been through the steps to create your test case you will have a test 
case that XPLORE can work from. Once this test case is in place, XPLORE goes to work. It generates a script with every 
possible value for every optimizer parameter available, including the hidden ones as well as the fix control settings 
(we’ll discuss those shortly). This script then runs the test case for each possible value for all the parameters and 
generates an HTML file with the results. The results of all these tests are summarized and hyperlinked in the HTML 
file to the execution plan and the setting that was changed. It’s a real work out for the cost-based optimizer,  
but remember there’s no data (usually).

There are four basic steps to using XPLORE. 

1. Get access to the test case

2. Set the baseline environment for the test case

3. Create a script that can run your test case

4. Create a superscript that will run all possible values with your test case.

Let’s talk about each of these steps in more detail.
You must be able to run q.sql without an error and be able to generate the execution plan. Both of these are 

requirements, because if the SQL does not run you cannot generate an execution plan, and if you cannot generate an 
execution plan you cannot generate costs. Without costs you cannot go exploring.

The second step allows you to set some special characteristic of the test case that applies to all the variants tested. 
Whatever you select here (it could be an optimizer parameter or a fix control or some other environmental setting) 
it will be done before each iteration of the XPLORE process. You might choose to do this if you were sure that the 
problem you were investigating had some characteristic you did not want to deviate from. Then you let the brute force 
method take over.

The third step is to generate a generic script based on your settings, which is used as a framework for the 
superscript.

The final step is to use this framework script to iterate over all the possible values of the choices you have selected 
(optimizer parameter, fix control, and Exadata parameters) to create a very big script that does all the work. This big 
script (the superscript) collects all the information from all the executions and puts all the information into one HTML 
document. This is the HTML document you then look at manually and apply your intelligence to.

What Can XPLORE Change?
As we mentioned earlier, XPLORE can look at the effect of changes to the optimizer parameters, the fix control 
settings, and the special Exadata parameters. It cannot be used to test for bad statistics, skewed data, index changes, 
or similar structural changes to the database objects. If you choose CBO parameters you will only get a report covering 
the standard CBO parameters (including the hidden ones). This is a much shorter report than including the fix 
control settings. If you suspect that some optimizer feature related to a bug is the cause of the problem then you may 
choose to use the fix control settings and ignore the optimizer parameters. If you suspect an Exadata specific problem 
then you can choose to select only those parameters related to Exadata. There are not many (16) Exadata specific 
parameters, so I think it would be useful to list them here. You can get this list from sqlt$_v$parameter_exadata.  
You can get a similar list for the “normal” non-Exadata parameters, but the list is too long to put here (there are  
275 parameters, I list these in Appendix B)
 



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

207

SQL> select name, description from sqlt$_v$parameter_exadata;
 
NAME                                 DESCRIPTION
-----------------------------------------------------------------------------------------------
_kcfis_cell_passthru_enabled         Do not perform smart IO filtering on the cell
_kcfis_rdbms_blockio_enabled         Use block IO instead of smart IO in the smart IO module on
                                     RDBMS
_kcfis_storageidx_disabled           Don't use storage index optimization on the storage cell
_kcfis_control1                      Kcfis control1
_kcfis_control2                      Kcfis control2
cell_offload_processing              enable SQL processing offload to cells
_slave_mapping_enabled               enable slave mapping when TRUE
_projection_pushdown                 projection pushdown
_bloom_filter_enabled                enables or disables bloom filter
_bloom_vector_elements               number of elements in a bloom filter vector
_bloom_predicate_enabled             enables or disables bloom filter predicate pushdown
_bloom_predicate_pushdown_to_storage enables or disables bloom filter predicate pushdown to
                                     storage
_bloom_folding_enabled               Enable folding of bloom filter
_bloom_pushing_max                   bloom filter pushing size upper bound
_bloom_pruning_enabled               Enable partition pruning using bloom filtering
parallel_force_local                 force single instance execution
 
16 rows selected.
 

Optimizer parameters, the fix control settings and the special Exadata parameters are the only things that you can 
explore with this method, but remember you can still change the baseline environment and re-run your explore each 
time. Each XPLORE iteration takes a considerable amount of time, so if you do make changes like these you need to be 
sure you’re on the right track before committing to an XPLORE run.

What XPLORE Cannot Change
XPLORE cannot change the structure of your SQL or suggest an index or remove an index a table. It is purely designed 
to find the changes that occur when CBO parameters are changed or when fix control changes are made. Even 
though XPLORE cannot change these things for you you’re free to change the query in q.sql and re-run XPLORE. For 
example you might decide that you need to change an index type or remove an index. This is again somewhat  
beyond the scope of XPLORE and can be done in better ways.

What Is Fix Control?
Oracle is an extremely flexible product, with many features and bug fixes, some of which are turned off by default 
and some of which are turned on by default. Fix Control then is the facility within Oracle that allows bug fixes to be 
changed from 0 (FALSE) to 1 (TRUE) or visa versa. As you can imagine enabling or disabling bug fixes in this way 
should only be done on a throwaway database as it can severely damage your database (open a support call before 
making any changes like this). Let’s look at one of these settings from the many that are used in xplore_script_1.sql, 
the main script of the whole XPLORE process. We’ll look at the 6897034 fix control parameter as an example. There are 
many many other fix control parameters like this that we will not describe, but they are all controlled in a similar way. 



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

208

This particular fix control parameter controls the bug fix that takes into account NULL rows in estimating cardinality. 
When “_fix_control” is true the optimizer takes NULLS into account. Here we set it to FALSE, which is not likely to be 
something you would want to do in a real-life situation.
 
ALTER SESSION SET "_fix_control" = '6897034:0';
 

The script, xplore_script_1.sql, which is the main driving script for the XPLORE process will in one of the 
iterations of XPLORE change this fix control setting from its default to its non-default value. In this case it will be 
changed from 1 to 0. When it is set to 1 this fix control setting is on. When it is set to 0 this fix control feature is off.  
We can find out what the feature is that this fix control setting represents by querying v$system_fix_control. Below  
I show a query where I interrogate my local database for the meaning of this particular fix control setting:
 
SQL> select
  BUGNO,
  VALUE,
  DESCRIPTION,
  OPTIMIZER_FEATURE_ENABLE,
  IS_DEFAULT
from
  v$system_fix_control
where
  bugno=6897034;
 
     BUGNO      VALUE DESCRIPTION           OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT
---------- ---------- --------------------- ------------------------- ----------
   6897034          1 index cardinality est 10.2.0.5                           1
                      imates not taking int
                      o account NULL rows
 

In this particular case bug number 6897034 has to do with index cardinality estimates and those estimates in 
relation to NULLs in rows. That could be a pretty serious problem, so by default this has been set to 1 (TRUE). The script 
I am running will set it to 0 to see if that makes a difference to the execution plan. The oldest version of Oracle in which 
this value was set to 1 was 10.2.0.5. In the previous version, 10.2.0.4 the value was 0 (or this bug fix was not introduced).

Remember I said that optimizer_features_enable was like a super switch. Well, we can test that now by setting 
optimizer_features_enable to 10.2.0.4 and seeing what happens to this particular fix control. First I show the 
current value of optimizer_features_enable, and then I show the current value of the fix control. Then I change the 
super parameter to 10.2.0.4, (first at the session level then at the system level). The value I have to set is the value just 
before 10.2.0.5, which is the value of the OPTIMIZER_FEATURE_ENABLE column for the fix control. (Yes the column is 
OPTIMIZER_FEATURE_ENABLE, and the parameter is optimizer_features_enable). After setting the super parameter 
at the system level I re-query the value of the fix control and I see that the super parameter has done its job and set the 
fix control as it would have been in that version.
 
SQL> show parameter optimizer_features_enable;
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
optimizer_features_enable            string      11.2.0.1
 
SQL> select
  BUGNO,
  VALUE,
  DESCRIPTION,



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

209

  OPTIMIZER_FEATURE_ENABLE,
  IS_DEFAULT
from
  v$system_fix_control
where
  bugno=6897034;
 
     BUGNO      VALUE DESCRIPTION           OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT
---------- ---------- --------------------- ------------------------- ----------
   6897034          1 index cardinality est 10.2.0.5                           1
                      imates not taking int
                      o account NULL rows
 
SQL> alter session set optimizer_features_enable='10.2.0.4';
 
Session altered.
 
SQL> select
  BUGNO,
  VALUE,
  DESCRIPTION,
  OPTIMIZER_FEATURE_ENABLE,
  IS_DEFAULT
from
  v$system_fix_control
where
  bugno=6897034;
 
     BUGNO      VALUE DESCRIPTION           OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT
---------- ---------- --------------------- ------------------------- ----------
   6897034          1 index cardinality est 10.2.0.5                           1
                      imates not taking int
                      o account NULL rows
 
 
SQL> alter system set optimizer_features_enable='10.2.0.4' scope=memory;
 
System altered.
 
SQL> select
  BUGNO,
  VALUE,
  DESCRIPTION,
  OPTIMIZER_FEATURE_ENABLE,
  IS_DEFAULT
from
  v$system_fix_control
where
  bugno=6897034;
 



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

210

     BUGNO      VALUE DESCRIPTION           OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT
---------- ---------- --------------------- ------------------------- ----------
   6897034          0 index cardinality est 10.2.0.5                           1
                      imates not taking int
                      o account NULL rows
 

If we run the super script it will do this step so that this parameter is set. The result will be that during that step 
of the XPLORE script we have a non-default set up for the session. It seems unlikely that this parameter is going to 
improve your query, but it’s not impossible. Imagine a case where some SQL is reliant on a faulty calculation for 
cardinality, which is then “fixed” by applying the fix for bug 6897034. Then the SQL could regress (perform less well), 
and it could then appear that the SQL was broken by an upgrade to 10.2.0.5. However, the XPLORE method is only 
applying a brute force approach; it just powers through every single option and lets you supply the intelligence to 
determine what is important and what is not. Now we know how XPLORE works, when to use it, and how to use it.  
We also know XPLORE is not the panacea for tuning problems but just one more tool on the Swiss Army knife of 
tuning. Before we look at an example XPLORE session let me first explain about SQL monitor.

What Is a SQL Monitor Report?
The real-time SQL monitoring feature was introduced in 11g and is by default turned off. If the SQL uses more than 
five seconds of CPU or runs in parallel the real-time monitoring will be turned on. If this feature is enabled statistics 
metrics are collected as the SQL executes and are stored for a few minutes. During that time the view v$sql_monitor 
and v$sql_plan_monitor contain the performance information. The type of information collected can be controlled 
by the type parameter and I’ve selected active which produces an HTML report type display (This is new in 11g 
Release 2). This detailed information is particularly useful because it shows each step’s use of CPU and I/O resources. 
This can be very helpful in determining which parts of your query need to be investigated, and if you are comparing 
SQL, which parts of your query have changed significantly. Below I list a typical set of commands you would issue to 
get a SQL monitor HTML report.

1. Add the hint /*+ monitor */ in the query. This causes the CBO to monitor the query even 
if it runs for less than five seconds or is not parallel.

2. Run your query.

3. Get the SQL_ID (select sql_id from v$sql_text where sql_text like  
'%<Your SQL Text here>%';)

4. Then execute this code:
 
set trimspool on
set trim on
set pages 0
set linesize 1000
set long 1000000
set longchunksize 1000000
spool sqlmon_active_1st_run.html
select dbms_sqltune.report_sql_monitor(sql_id=>'&sqlid',type=>'active') from
dual;
spool off
 

This produces an HTML file just like the one in Figure 12-1.



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

211

Now that we know what SQL monitor HTML reports are, we’ll see that the XPLORE session creates them for us by 
default. Let’s see the steps required to create an XPLORE report.

Figure 12-1. A typical SQL Monitor report



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

212

An Example XPLORE Session
In this XPLORE session we will go through every single step, including looking at the results and explaining what 
they tell us about the SQL in relation to the parameters which were changed. In this example test case I am using an 
XTRACT test case with no data, it is case S64661. This is the SQL being explored:
 
select country_name, sum(AMOUNT_SOLD)
from sales s, customers c, countries co
where
  s.cust_id=c.cust_id
  and co.country_id=c.country_id
  and country_name in (
    'Ireland','Denmark','Poland','United Kingdom',
    'Germany','France','Spain','The Netherlands','Italy')
  group by country_name order by sum(AMOUNT_SOLD);
 

It is being run on 11.2.0.1, and I’m curious to know if this SQL ran better in previous versions of Oracle. I also 
want to know if I can set up my throwaway database to run this more quickly. I could also be interested in running 
XPLORE for this SQL because I recently wrote it, it’s not performing as I expected, and I think this may be because  
of a bug. It’s a long shot, but I’m willing to give XPLORE a shot.

Getting Your Test Case Built
As I mentioned earlier there is no way to run XPLORE without first building a test case. In this example I’m using 
the same test case as I used in Chapter 11. By navigating to the xplore directory under utl I am able to easily run 
XPLORE’s install script.
 
C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.4.6\sqlt\utl\xplore>sqlplus / as sysdba
SQL*Plus: Release 11.2.0.1.0 Production on Mon Dec 17 19:37:00 2012
Copyright (c) 1982, 2010, Oracle.  All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> @install
Test Case User: TC64661
Password: TC64661
 

This install script grants the test case user enough privileges (DBA) to run the scripts that are to follow. 
Remember this can only be run on a stand-alone system that can be replaced easily. The script finishes with
 
Package created.
No errors.
Package body created.
No errors.
Installation completed.
You are now connected as TC64661.
1. Set CBO env if needed
2. Execute @create_xplore_script.sql
 



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

213

The first step “Set CBO env if needed” is reminding you that if your test case needs to set any environmental 
settings that you want to be constant for all the runs of your test case, then you must set it here. This is then applied 
to the baseline and is executed before each execution of the scripts for each test. By giving the install script the test 
case user you have changed the user into a DBA of the system and allowed it to change all system parameters and 
fix control settings. The test case user also knows the script that needs to be run and will then proceed to build the 
template script and then the superscript.

Building the First Script
This first script does nothing more than collect your settings for your XPLORE session and then calls  
xplore.create_xplore_script with those parameters. Here is the line from the script:
 
EXEC xplore.create_xplore_script(
  '&&xplore_method.',         <<<This can take a value of XECUTE or XPLAIN
  '&&include_cbo_parameters.',<<<Include CBO parameters or not
  '&&include_exadata_parameters.',<<<Include Exadata specific parameters or not
  '&&include_fix_control.',   <<<Include Fix control or not
  '&&generate_sql_monitor_reports.'); <<<Generate SQL monitor reports or not.
 

These lines all make a difference to the final report that is created. The xplore_method controls XPLORE to allow 
it to run in XPLAIN mode or in XECUTE mode. In XPLAIN mode there is no execution of the SQL. XPLAIN mode is 
generally fast enough for most cases. XECUTE executes the SQL, and if there is also data present then this can take a 
very long time to complete. To clarify, the XECUTE option here is not related to the XECUTE method: this is an option 
of XPLORE utility we are talking about here. If the SQL can be executed relatively quickly, or if you have enough time 
to wait for the result then XECUTE will give you more information.

The next two parameters control the groups of parameters that you wish to explore. You can choose to explore 
all of them, in other words try all values for all CBO parameters, and all Exadata-specific parameters. If your test case 
is from an Exadata machine then you may be interested in choosing this option also. If your test case is not from 
Exadata, then there is no point in choosing this option because these tests will only have an effect on an Exadata 
machine. Then you can choose to set fix control parameters (we mentioned these in a previous section of this 
chapter). You may be interested in checking these parameters if you suspect you are suffering from an optimizer bug. 
When you run this script and enter the required parameters a new bigger script will be generated.

Building the Superscript
Now we come to the last step before running the XPLORE session. The first thing we need to do is copy the test SQL 
script to the utl\xplore directory. This is to allow the XPLORE session to access the script. In my case this is the 
command I issued:
 
>copy "C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.4.6\sqlt\run\sqlt_s64661\TC\q.sql"
"C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.4.6\sqlt\utl\xplore\q.sql"
 

We run the create_xplore_script.sql, which will prompt for the parameters described in the previous section. 
Here we see a run of the script where we have chosen XPLAIN mode and chosen to explore CBO parameters, Exadata 
parameters, and fix control parameters and to produce SQL monitor reports.
 
SQL> @create_xplore_script.sql
Parameter 1:
XPLORE Method: XECUTE (default) or XPLAIN
"XECUTE" requires /* ^^unique_id */ token in SQL



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

214

"XPLAIN" uses "EXPLAIN PLAN FOR" command
Enter "XPLORE Method" [XECUTE]: XPLAIN
Parameter 2:
Include CBO Parameters: Y (default) or N
Enter "CBO Parameters" [Y]: Y
Parameter 3:
Include Exadata Parameters: Y (default) or N
Enter "EXADATA Parameters" [Y]: Y
Parameter 4:
Include Fix Control: Y (default) or N
Enter "Fix Control" [Y]: Y
Parameter 5:
Generate SQL Monitor Reports: N (default) or Y
Only applicable when XPLORE Method is XECUTE
Enter "SQL Monitor" [N]: Y
Review and execute @xplore_script_1.sql
 

The script created now is extremely long. We can get a general feeling for what’s in this script by looking at a few 
entries near the top of the file.
 
1. SET DEF ON ECHO OFF TERM ON APPI OFF SERVEROUT ON SIZE 1000000 NUMF "" SQLP SQL>;
2. SET SERVEROUT ON SIZE UNL;
3. SET ESC ON SQLBL ON;
4. SPO xplore_script_1.log;
5. COL connected_user NEW_V connected_user FOR A30;
6. SELECT user connected_user FROM DUAL;
7. PRO
8. PRO Parameter 1:
9. PRO Name of SCRIPT file that contains SQL to be xplored (required)
10. PRO
11. SET DEF ^ ECHO OFF;
12. DEF script_with_sql = '^1';
13. PRO
14. PRO Parameter 2:
15. PRO Password for ^^connected_user. (required)
16. PRO
17. DEF user_password = '^2';
18. PRO
19. PRO Value passed to xplore_script.sql:
20. PRO ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21. PRO SCRIPT_WITH_SQL: ^^script_with_sql
22. PRO
23. PRO -- begin common
24. PRO DEF _SQLPLUS_RELEASE
25. PRO SELECT USER FROM DUAL;
26. PRO SELECT TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS') current_time FROM DUAL;
27. PRO SELECT * FROM v$version;
28. PRO SELECT * FROM v$instance;
29. PRO SELECT name, value FROM v$parameter2 WHERE name LIKE '%dump_dest';
30.  PRO SELECT directory_name||' '||directory_path directories FROM dba_directories WHERE  

directory_name LIKE 'SQLT$%' OR directory_name LIKE 'TRCA$%' ORDER BY 1;



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

215

31. PRO -- end common
32. PRO
33. SET VER ON HEA ON LIN 2000 PAGES 1000 TRIMS ON TI OFF TIMI OFF;
 

I’ve numbered the lines in the code, as it is worth explaining what’s happening in detail here for some of these 
lines. Some lines are just PROMPT, which is just a blank line.

1.  SET DEF ON ECHO OFF TERM ON APPI OFF SERVEROUT ON SIZE 1000000 NUMF "" 
SQLP SQL>; - Sets up the default format for output as the script relies on the format to 
produce a workable HTML file as it runs the script

2. SET SERVEROUT ON SIZE UNL; - Makes sure the size of output is unlimited

3. SET ESC ON SQLBL ON; - Sets ESCAPE Mode on and blank line mode

4. SPO xplore_script_1.log; - The script we are spooling to

5.  COL connected_user NEW_V connected_user FOR A30; - Sets the format for the 
connected_user column

6. SELECT user connected_user FROM DUAL; - Gets the connected user

8. PRO Parameter 1: - Gets the script name

9.  PRO Name of SCRIPT file that contains SQL to be explored (required) - 
Prompts for information

11. SET DEF ^ ECHO OFF; - Sets up more environmental settings

12.  DEF script_with_sql = '^1'; - Sets up the variable name (script_with_sql) to ^1

15.  PRO Password for ^^connected_user. (required) - Gets the password for the test 
case user

17.  DEF user_password = '^2'; - Sets the password for the test case user to the variable 
user_password

21.  PRO SCRIPT_WITH_SQL: ^^script_with_sql - Gets the script file name and sets the 
variable script_with_sql

25. PRO SELECT USER FROM DUAL; - Selects the current connected user

26.  PRO SELECT TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS') current_time FROM 
DUAL; - Selects the date and time

27. PRO SELECT * FROM v$version; - Selects the current version

28. PRO SELECT * FROM v$instance; - Selects the instance information

29.  PRO SELECT name, value FROM v$parameter2 WHERE name LIKE '%dump_dest'; - 
Shows the dump destinations

30.  PRO SELECT directory_name||' '||directory_path directories  
FROM dba_directories WHERE directory_name LIKE 'SQLT$%' OR directory_name 
LIKE 'TRCA$%' ORDER BY 1; - Checks the Oracle Directories are set up

33.  SET VER ON HEA ON LIN 2000 PAGES 1000 TRIMS ON TI OFF TIMI OFF; - At the end 
of the common section, sets the required format environment.



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

216

This is the end of the common code. Now we have code that is generated in a loop. I show the first section of  
this script:
 
--
 1. SET ECHO ON;
 2. --in case of disconnects, suspect 6356566 and un-comment workaround in line below if needed
 3. --ALTER SESSION SET "_cursor_plan_unparse_enabled" = FALSE;
 4. WHENEVER SQLERROR EXIT SQL.SQLCODE;
 5. --
 6. COL run_id NEW_V run_id FOR A4;
 7. SELECT LPAD((NVL(MAX(run_id), 0) + 1), 4, '0') run_id FROM xplore_test;
 8. --
 9. DELETE plan_table_all WHERE statement_id LIKE 'xplore_{001}_[^^run_id.]_(%)';
10. EXEC xplore.set_baseline(1);
11. --
12. SET BLO .
13. GET ^^script_with_sql.
14. .
15. C/;/
16. 0 EXPLAIN PLAN SET statement_id = 'xplore_{001}_[^^run_id.]_(00000)' INTO plan_table_all FOR
17. L
18. /
19. EXEC xplore.snapshot_plan('xplore_{001}_[^^run_id.]_(00000)', 'XPLAIN', 'Y');
20. WHENEVER SQLERROR CONTINUE;
 

These 20 lines are the core of XPLORE. I’ll explain what is happening here. 

Lines 1–4. Ensures that echo is on so that we get some output and ensure that an error 
stops the SQL

Lines 5–8. Sets the format for the column run_id, and selects the current run_id from the 
table xplore_test

Line 9. Deletes the entries in the PLAN_TABLE where there are any matching statements to 
the about to be executed statement.

Line 10. Sets the baseline that we decided as users to set before the execution of every 
iteration of the XPLORE

Lines 11–14. Sets the block termination to “.”, gets the script (in our case q.sql) and stops the 
block

Lines 15–17. Removes the “;” from the script you just got from the file and replaces it with 
a blank (we are going to execute this with “/” not “;”); then sets line 0 as EXPLAIN PLAN etc., 
appends the SQL you got from the file with L, and executes the combination statement. The 
complete line should look like this:

 
EXPLAIN PLAN SET statement_id = 'xplore_{001}_[0001]_(00001)' INTO plan_table_all FOR 
select /* ^^001 */  country_name, sum(AMOUNT_SOLD) from sh.sales s, sh.customers c, 
sh.countries co where s.cust_id=c.cust_id and co.country_id=c.country_id and country_
name in ('Ireland','Denmark','Poland','United Kingdom','Germany','France','Spain','The 
Netherlands','Italy') group by country_name order by sum(AMOUNT_SOLD);

 



CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

217

Lines 18–20. Executes the above statement and uses the snapshot_plan routine that 
captures all the information in the plan table and other information and stores it all in the 
internal SQLT repository ready to be output at the end in the final report.

Once you’ve reviewed this script and are happy that it will produce the right results, then you can run the  
xplore_script_1.sql. I know I’ve gone into more detail here than is needed to use the script, but these few lines  
are the very core of the XPLORE method. We could go into more detail and look at the procedure snapshot_plan  
in xplore.pkb, but that is beyond the scope of this book.

Running the Script
Running the script is just a matter of executing xplore_script_1.sql. I show below the first run through of the script, 
with the collection of the parameters:
 
SQL>@xplore_script_1.sql
TC64661
 
Parameter 1:
Name of SCRIPT file that contains SQL to be xplored (required)
Note: SCRIPT must contain comment /* ^^unique_id */
Enter value for 1: q.sql
Parameter 2:
Password for TC64661 (required)
Enter value for 2: TC64661
Value passed to xplore_script.sql:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SCRIPT_WITH_SQL: q.sql
-- begin common
DEF _SQLPLUS_RELEASE
SELECT USER FROM DUAL
SELECT TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS') current_time FROM DUAL
SELECT * FROM v$version
SELECT * FROM v$instance
SELECT name, value FROM v$parameter2 WHERE name LIKE '%dump_dest'
SELECT directory_name||' '||directory_path directories FROM dba_directories WHERE directory_name
LIKE 'SQLT' ORDER BY 1
-- end common
SQL>--in case of disconnects, suspect 6356566 and un-comment workaround in line below if needed
SQL>--ALTER SESSION SET "_cursor_plan_unparse_enabled" = FALSE;
SQL>WHENEVER SQLERROR EXIT SQL.SQLCODE;
SQL>--
SQL>COL run_id NEW_V run_id FOR A4;
SQL>SELECT LPAD((NVL(MAX(run_id), 0) + 1), 4, '0') run_id FROM xplore_test;
RUN_

0001
SQL>--
SQL>DELETE plan_table_all WHERE statement_id LIKE 'xplore_{001}_[^^run_id.]_(%)';
old 1: DELETE plan_table_all WHERE statement_id LIKE 'xplore_{001}_[^^run_id.]_(%)'
new 1: DELETE plan_table_all WHERE statement_id LIKE 'xplore_{001}_[0001]_(%)'

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

218

We’ve set the environment now and have to set any baseline set up before running the script we are investigating.

SQL>EXEC xplore.set_baseline(1);
--
-- begin set_baseline
--
--
-- end set_baseline
--
SQL>--
SQL>ALTER SESSION SET STATISTICS_LEVEL = ALL;
SQL>DEF unique_id = "xplore_{001}_[^^run_id.]_(00000)"
SQL>@^^script_with_sql.
SQL>REM $Header: 215187.1 sqlt_s64661_tc_script.sql 11.4.4.6 2012/12/13 carlos.sierra $
SQL>
SQL>
SQL>select
 2 /* ^^unique_id */ country_name, sum(AMOUNT_SOLD)
 3 from sh.sales s, sh.customers c, sh.countries co
 4 where
 5 s.cust_id=c.cust_id
 6 and co.country_id=c.country_id
 7 and country_name in (
 8 'Ireland','Denmark','Poland','United Kingdom',
 9 'Germany','France','Spain','The Netherlands','Italy')
 10 group by country_name order by sum(AMOUNT_SOLD);
old 2: /* ^^unique_id */ country_name, sum(AMOUNT_SOLD)
new 2: /* xplore_{001}_[0001]_(00000) */ country_name, sum(AMOUNT_SOLD)
COUNTRY_NAME SUM(AMOUNT_SOLD)
-- ----------------
Poland 8447.14
Denmark 1977764.79
Spain 2090863.44
France 3776270.13
Italy 4854505.28
United Kingdom 6393762.94
Germany 9210129.22
SQL>EXEC xplore.snapshot_plan('xplore_{001}_[^^run_id.]_(00000)', 'XECUTE', 'Y');
SQL>WHENEVER SQLERROR CONTINUE;
SQL>--

After this first run we see that we do get results (as I selected to have data in my XPLORE). The data from this run
will be collected, along with all the other runs into the SQLT repository ready to produce the report at the end of the run.

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

219

Reviewing the Results
When the script finally finishes (it can take hours if you have data) you will see a messages indicating that the HTML
files are being compressed and the main report is being created. The XPLORE Completed message is a big clue that
we are now ready to read the report. Here is the output at the end of the XPLORE run.

 adding: xplore_sql_monitor_report_1_00728.html (164 bytes security) (deflated 81%)
 adding: xplore_sql_monitor_report_1_00729.html (164 bytes security) (deflated 80%)
 adding: xplore_sql_monitor_report_1_00730.html (164 bytes security) (deflated 80%)
 adding: xplore_sql_monitor_report_1_00731.html (164 bytes security) (deflated 80%)
test of xplore_sql_monitor_report_1.zip OK
 adding: xplore_report_1.html (164 bytes security) (deflated 96%)
 adding: xplore_script_1.log (164 bytes security) (deflated 98%)
 adding: xplore_script_1.sql (164 bytes security) (deflated 95%)
 adding: xplore_sql_monitor_report_1.zip (164 bytes security) (stored 0%)
test of xplore_1.zip OK
 zip warning: error deleting xplore_script_1.sql
XPLORE Completed.
Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

A new file has been created called xplore_1.zip, which is in the directory where we ran the XPLORE superscript.

C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.4.6\sqlt\utl\xplore>dir
 Volume in drive C has no label.
 Volume Serial Number is 77E9-80B4

 Directory of C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.4.6\sqlt\utl\xplore

12/22/2012 12:28 PM <DIR> .
12/22/2012 12:28 PM <DIR> ..
08/11/2011 01:19 AM 1,696 create_xplore_script.sql
07/09/2011 07:01 PM 325 drop_sys_views.sql
08/11/2011 12:46 AM 499 drop_user_objects.sql
08/11/2011 12:46 AM 537 install.sql
12/13/2012 08:53 PM 452 q.sql
08/11/2011 12:46 AM 2,622 readme.txt
07/09/2011 07:01 PM 3,972 sys_views.sql
08/11/2011 12:46 AM 184 uninstall.sql
08/11/2011 12:46 AM 6,844 user_objects.sql
04/02/2012 10:43 AM 58,807 xplore.pkb
10/11/2011 06:29 AM 2,843 xplore.pks
12/22/2012 12:28 PM 3,839,878 xplore_1.zip
12/22/2012 09:45 AM 301,600 xplore_script_1.sql
12/22/2012 09:31 AM 3,239 xplore_script_2.log
12/22/2012 09:29 AM 301,600 xplore_script_2.sql
12/22/2012 09:33 AM 2,341 xplore_script_3.log
12/22/2012 09:32 AM 301,600 xplore_script_3.sql
 17 File(s) 4,829,039 bytes
 2 Dir(s) 6,701,252,608 bytes free

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

220

To use this report it is best to create a sub-directory and unzip the files in xplore_1.zip. In the zip file is an HTML
file (the main report), a log file of the run, and the xplore script that was run. The only file of interest to us now is the
HTML file. If we open this file with a browser we see it is much less fussy than a normal XECUTE or XTRACT report.
It starts with a simple title “XPLORE Report for baseline:1 runid:1”, and we are straight into endless numbers. This
“Plans Summary” part of the report shows all the discovered plans for our one SQL. Let’s look at Figure 12-2, which
shows this part of the report. This is the jumping off point to all the other parts of the report.

Figure 12-2. The top part of the XPLORE report

There were only 5 different plans in this case (it was a very simple piece of SQL). For example, PHV 922729823
only had one test so it is not surprising that the maximum and minimum cost was the same at 5046. The original
plan had a cost of 947, so this option clearly is not a good one. If we look at what that test was we’ll be able to see why
it didn’t turn out so well. Scroll to the section show in Figure 12-3, which shows the “Discovered Plans,” just below
the “Plans Summary.” Here I want to know why my original cost of 947 increased to 5,046. The arrow is pointing to
the hyperlink that takes me to a different section of the same report, which details what happened on this test. See
Figure 12-3, which shows the “Discovered Plans” section of the report.

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

221

Once we click on this hyperlink we are taken to section of the report showing what was done and what happened.
Figure 12-4 shows the details for this particular plan hash value.

Figure 12-3. You can get to the test details by clicking on the hyperlink under the “Total Tests” column

Figure 12-4. The details for the PHV 922729823

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

222

We can see that the test for this PHV was to set "_hash_join_enabled"=FALSE if we look at the original execution
plan from the XTRACT report for this SQL (see Figure 12-5)

The original plan was to use “TABLE ACCESS FULL” for COUNTRIES and CUSTOMERS and then use a hash
join,followed by another hash join of that with the result of the “TABLE ACCESS FULL” of SALES. The main thrust
of this plan is to use hash joins. Now our XPLORE has disabled this option by setting the hidden parameter, not too
surprising the plan has become more costly. If we click on the number under the “Test Id” column (as shown in
Figure 12-4) we will see which plan was actually chosen. This is the plan we see.

|Id |Operation |Name | Cost (%CPU)| Buffers | 1Mem | O/1/M |

| 0|SELECT STATEMENT | | 5046 (100)| 3179 | | |
| 1| SORT ORDER BY | | 5046 (3)| 3179 | 2048 | 1/0/0|
| 2| HASH GROUP BY | | 5046 (3)| 3179 | 770K| 1/0/0|
| 3| MERGE JOIN | | 5008 (2)| 3179 | | |
| 4| SORT JOIN | | 825 (1)| 1461 | 546K| 1/0/0|
| 5| MERGE JOIN | | 632 (1)| 1461 | | |
|* 6| TABLE ACCESS BY INDEX ROWID|COUNTRIES | 2 (0)| 2 | | |
| 7| INDEX FULL SCAN |COUNTRIES_PK | 1 (0)| 1 | | |
|* 8| SORT JOIN | | 630 (1) | 1459 | 615K| 1/0/0|
| 9| TABLE ACCESS FULL |CUSTOMERS | 406 (1)| 1459 | | |
|*10| SORT JOIN | | 4183 (2)| 1718 | 1763K| 1/0/0|
| 11| PARTITION RANGE ALL | | 494 (3)| 1718 | | |
| 12| TABLE ACCESS FULL |SALES | 494 (3)| 1718 | | |

No sign of a hash join, as expected. The optimizer has honored our requirement and avoided this, but it has been
detrimental to our plan, so we know not to force the optimizer to not use a hash join. This is where the intelligence
part comes in. We know that a hash join is a good idea here, but the brute force approach of XPLORE does not.

Figure 12-5. The original execution plan as shown in the XTRACT report for the SQL

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

223

Finding the Best Execution Plan
So enough of how the plan can be made worse. Let’s go back to the plan summaries (see Figure 12-2) and now look
to see if there have been any improvements. We see that there was a big improvement for PHV 2917593948. Here
we see a plan that shows a minimum cost of 123 (much less than our original plan cost of 947. If we then look at the
“Discovered Plans” section we see that there were two tests done. If we now click on the hyperlinked “2” we see the
completed tests for this PHV (see Figure 12-6)

We see in this already that the reason the cost was so low in this case was that we set optimizer_index_cost_adj
to 1. In other words, we forced indexes to be used. We can see the plan used for test 315 by clicking on the
hyperlinked 315. This is the plan we see (I’ve removed some columns for clarity).

--
|Id |Operation | Name | Cost (%CPU)| Reads |
--
| 0 |SELECT STATEMENT | | 123 (100)| 60 |
| 1 | SORT ORDER BY | | 123 (54)| 60 |
| 2 | HASH GROUP BY | | 123 (54)| 60 |
|* 3 | HASH JOIN | | 84 (33)| 60 |
|* 4 | HASH JOIN | | 31 (10)| 4 |
|* 5 | TABLE ACCESS FULL | COUNTRIES | 3 (0)| 0 |
| 6 | TABLE ACCESS BY INDEX ROWID | CUSTOMERS | 27 (8)| 4 |
| 7 | BITMAP CONVERSION TO ROWIDS | | | 4 |
| 8 | BITMAP INDEX FULL SCAN | CUSTOMERS_GENDER_BIX | | 4 |
| 9 | PARTITION RANGE ALL | | 49 (41)| 56 |
| 10 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES | 49 (41)| 56 |
| 11 | BITMAP CONVERSION TO ROWIDS | | | 56 |
| 12 | BITMAP INDEX FULL SCAN | SALES_PROMO_BIX | | 56 |

It looks like using the bitmap indexes is useful in this case, as the cost is so low. We have to ask why the optimizer
did not choose the index in the first place, and for this we would need to look at the statistics in the original XTRACT
report. We see from the system observations that optimizer_dynamic_sampling is set to 1 (so in this case no dynamic
sampling would have been done). See Figure 12-7, which shows this from the XTRACT report.

Figure 12-6. The test details for PHV 2917593948

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

224

As we have a value of 1 for dynamic sampling we know that dynamic sampling could take place but in this case
did not because the tables involved are not unindexed (see Chapter 8 for details on cardinality feedback and dynamic
sampling). Still not using dynamic sampling is not an excuse for getting the plan wrong, but it could explain why the
plan was not saved by dynamic sampling if statistics are missing.

Reviewing the Original Test Case
If we look at the observations in the original report we see that the many of the partition statistics are missing and are
out of date (which doesn’t matter in my case as the data is static). However as it looks like the statistics are the cause of
the wrong plan being selected I’ll update them and retry the SQL.

The SQL I used to collect the new up to date statistics was:

SQL> exec dbms_stats.gather_Table_stats(ownname=>'TC64661',
 tabname=>'SALES', estimate_percent=>dbms_stats.auto_sample_size,cascade=>TRUE)

PL/SQL procedure successfully completed.

SQL> exec dbms_stats.gather_Table_stats(ownname=>'TC64661',
 tabname=>'COUNTRIES', estimate_percent=>dbms_stats.auto_sample_size,cascade=>TRUE);

PL/SQL procedure successfully completed.

SQL> exec dbms_stats.gather_Table_stats(ownname=>'TC64661',
 tabname=>'CUSTOMERS', estimate_percent=>dbms_stats.auto_sample_size,cascade=>TRUE);

PL/SQL procedure successfully completed.

Remember, in this case I also used data from the source tables (which is not always the case). If I collect fresh
statistics on all of the relevant tables (as shown above) and re-run my test case I get this execution plan

Figure 12-7. Optimizer dynamic sampling is set to 1

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

225

SQL> @tc

COUNTRY_NAME SUM(AMOUNT_SOLD)
-- ----------------
Poland 8447.14
Denmark 1977764.79
Spain 2090863.44
France 3776270.13
Italy 4854505.28
United Kingdom 6393762.94
Germany 9210129.22

7 rows selected.

PLAN_TABLE_OUTPUT
--

SQL_ID f43bszax8xh07, child number 0

select /* ^^unique_id */ country_name, sum(AMOUNT_SOLD) from sales s,
customers c, countries co where s.cust_id=c.cust_id and
co.country_id=c.country_id and country_name in (
'Ireland','Denmark','Poland','United Kingdom',
'Germany','France','Spain','The Netherlands','Italy') group by
country_name order by sum(AMOUNT_SOLD)

Plan hash value: 1235134607

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | | | 4 (100)| |
| 1 | SORT ORDER BY | | 1 | 87 | 4 (50)| 00:00:01 |
| 2 | HASH GROUP BY | | 1 | 87 | 4 (50)| 00:00:01 |
| 3 | NESTED LOOPS | | 1 | 87 | 2 (0)| 00:00:01 |
| 4 | NESTED LOOPS | | 1 | 52 | 2 (0)| 00:00:01 |
| 5 | PARTITION RANGE ALL | | 1 | 26 | 2 (0)| 00:00:01 |
| 6 | TABLE ACCESS FULL | SALES | 1 | 26 | 2 (0)| 00:00:01 |
| 7 | TABLE ACCESS BY INDEX ROWID| CUSTOMERS | 1 | 26 | 0 (0)| |
|* 8 | INDEX UNIQUE SCAN | CUSTOMERS_PK | 1 | | 0 (0)| |
|* 9 | TABLE ACCESS BY INDEX ROWID | COUNTRIES | 1 | 35 | 0 (0)| |
|* 10 | INDEX UNIQUE SCAN | COUNTRIES_PK | 1 | | 0 (0)| |
--

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

226

Predicate Information (identified by operation id):

 8 - access("S"."CUST_ID"="C"."CUST_ID")
 9 - filter(("COUNTRY_NAME"='Denmark' OR "COUNTRY_NAME"='France' OR "COUNTRY_NAME"='Germany' OR
 "COUNTRY_NAME"='Ireland' OR "COUNTRY_NAME"='Italy' OR "COUNTRY_NAME"='Poland'

OR "COUNTRY_NAME"='Spain'
 OR "COUNTRY_NAME"='The Netherlands' OR "COUNTRY_NAME"='United Kingdom'))
 10 - access("CO"."COUNTRY_ID"="C"."COUNTRY_ID")

36 rows selected.

This plan is even better than the one found by XPLORE. It has a cost of 4. We found this plan because we used
XPLORE to give us a hint. The hint was that using indexes would be a good idea for everything except SALES.
We need to do a TABLE ACCESS FULL on SALES as we are summing sales for a big group of countries. However, using
TABLE ACCESS FULL on the other tables didn’t make sense. It’s not surprising that the example came out this way
(I planned it that way), but real life examples are exactly like this. The steps in the discovery usually go:

1. Something unexpected happens to some SQL (slows down invariably).

2. Get the XTRACT test case.

3. Discover what is wrong with the SQL or its environment by studying the report.

4. If the previous step fails, run an XPLORE, which sometimes finds an interesting change to
consider (such as the optimizer_index_cost_adj in our example above).

5. We compare the “good” plan from the XPLORE with the “bad” plan from the XTRACT and
figure out what the difference is in terms of optimizer steps. In our case it was lack of
index use.

6. Review the XTRACT report again to see if you can determine why the action that should
have taken place did not (in our case it was “why were the indexes not used”).

7. Amend the original test environment to make the optimizer action take place and
compare the execution plan costs again.

8. If step 7 has the desired effect, do more testing, and if everything goes as expected
implement the improvement.

These steps are an example of the standard tuning methodology: test, make single changes, and test again. The
test case allows you to do this quickly and efficiently. As you get more proficient with XTRACT you will find that using
XPLORE is not needed. It’s a bit like weather forecasting: “The accuracy of a weather forecast is in direct proportion
to the number of gray hairs on the forecaster’s head.” The lesson to remember from this chapter is that although we
found that setting optimizer_index_cost_adj to 1 made our execution plan much better, that was not the solution.
That only prompted us to find the real solution, which was to fix the statistics.

In other words, we found a problem that was not related to an upgrade (i.e., the statistics were wrong), but
XPLORE hinted at the solution. This is the surprising thing about XPLORE. Again, it is primarily used to determine
what changes (due to upgrades) were made to the optimizer and may have regressed execution plans. However, if we
use XPLORE in extremis, we may find in one of the execution plans a kernel of an idea that suggests a solution to our
tuning problem, even though the original problem may not be related to changes in the optimizer behavior.

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

227

Other Information in XPLORE
In our example XPLORE we focused directly on finding the best plan and didn’t stop to look at all the other
information presented by XPLORE. Here we’ll briefly look at some other sections that need to be mentioned. The first
one is the “Baseline” section, which shows the settings for each of the tests. See Figure 12-8, which shows the top part
of the baseline section of the XPLORE report.

This part of the report shows the starting position of the tests. It starts by listing all the fix control settings as they
are on the test database before we start and then goes on to list all the optimizer parameters (including the hidden
ones). Along with all this information in the main report there is also a zip file created in the XPLORE zip file (yes, a zip
file inside a zip file). This zip file called xplore_sql_monitor_report_1.zip contains the SQL monitor HTML output
for every single execution of the script. This is a vast amount of information. You would never look at every single one of
these execution reports, but if you have data and you have finally settled on a plan that you like, such as our test Id 315
from above, then we can investigate the SQL monitor report for this one test more closely. As usual you should create
a directory and put the zip file in there. Then unzip the file. In this directory you will end up with 732 HTML reports:
one for each test and one SQL file that shows how the scripts were created. Let’s look at one of these monitor reports,
specifically report 315. Look at Figure 12-9, which shows the left hand side of the monitor report for test Id 315.

Figure 12-8. The top part of the baselines report in XPLORE

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

228

We can see the execution plan and the cost for each step, but we can also see the amount of time spent on each
step of the plan. We can see that much of the time was spent on BITMAP INDEX FULL SCAN of SALES_PROMO_BIX.
In fact if we hover the mouse over the duration bar for this bitmap index we will see the duration in seconds for that
step. If we look at the right hand side of the same report (as shown in Figure 12-10).

Figure 12-9. The left hand side of the SQL monitor report for test ID 315

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

229

Figure 12-10. The right hand side of the SQL Monitor report for plan ID 315

This shows that 50 percent of the wait activity was for BITMAP INDEX FULL SCAN on CUSTOMERS and
the other 50 percent was for a BITMAP INDEX FULL SCAN on SALES. Because this plan was obtained by setting
optimizer_index_cost_adj to 1, we can see that indexes were used inappropriately and the change has resulted in
a better plan than the original bad plan. With this information we know that working on these two indexes is the way
to improve the execution time because they are the biggest contributors to the wait time.

CHAPTER 12 ■ USING XPLORE TO INVESTIGATE UNEXPECTED PLAN CHANGES

230

Summary
I hope you are impressed with what XPLORE can do for you, especially in conjunction with XTRACT and XECUTE and
of course with your knowledge of how the optimizer works. Although the example in this chapter was a nice simple
piece of SQL, this same methodology can work with very complex SQL and execution plans. Large pieces of SQL can
be broken down into smaller steps and attacked in order of importance, the importance being governed by the cost of
each step. XPLORE can investigate all the changes that are likely to have affected the optimizer’s calculations, and this
is most often the case when the optimizer changes when the versions of the database change. Use XPLORE wisely and
you will capture more of those pesky SQLs that go awry.

I must emphasize that all of the XPLORE activity must be run on a disposable database. It bears repeating that
setting environmental variables and system parameters and statistics that XPLORE does could cause havoc for any
system that you might be sharing with somebody else.

For all its power and flexibility XPLORE is not the ideal tool for general tuning but is extremely useful in those
cases where something has changed unexpectedly. In the next chapter we’ll look at the more advanced methods
available in SQLT.

231

CHAPTER 13

Trace Files, TRCANLZR
and Modifying SQLT behavior

Even with SQLT helping you sometimes you need to look at 10046 trace files and analyze these to determine what’s
happening. How you analyze and interpret 10046 files is outside the scope of this book. The standard guide for this is
Cary Millsap’s book Optimizing Oracle Performance (O’Reilly 2003). (This book is a little dated now, but still contains
useful information on 10046 trace files.) How to more easily collect these trace files, however, and format them so they
are easier to interpret is not beyond the scope of this book, as SQLT provides a number of methods for collecting this
information more quickly and more easily.

The 10046 trace files are log files of the Oracle engine’s activity as it executes SQL. These files are difficult to
interpret, full of obscure codes, and also very long. The 10053 trace files (as I mentioned in Chapter 5) are equally
obscure, difficult to understand, and also very long. When SQL statements are executed in parallel and 10046 tracing is
enabled, each slave process that is helping with the execution creates its own trace file. This makes the interpretation
and understanding of what is happening with parallel execution even more difficult. You can have hundreds of trace
files all relating to the same SQL all working in parallel and communicating with each other to achieve a common goal.
When things go wrong with these complex cases it can be hard enough just collecting the right trace files let alone
analyzing those trace files and getting a coherent picture from potentially hundreds of trace files.

In this chapter I’ll describe the following methods building from the simplest to the more complex. I’ll try
building on the simpler cases to explain the more complex cases.

10046 is the raw trace file or files of information.•

TKPROF provides a high-level view of the 10046 trace file. The input to this is the 10046 trace •
file, the output is the TKPROF report.

TRCASPLIT takes the raw 10046 and 10053 trace file or files and splits off the 10046 trace file •
information. This data can then be fed into TKPROF or any other utility that needs 10046 trace.

10053 is the raw trace file of the optimizer’s choices during parsing.•

TRCANLZR takes the raw 10046 and produces a graphical report that makes understanding •
the data easier.

TRCAXTR takes the raw 10046 trace and produces a SQLTXTRACT report.•

Each of the above tools takes 10046 or 10046 and 10053 mixed together and produces some simpler version of the
information.

We’ll start with methods to collect 10046 trace, then look at the oldest tool available, TKPROF (which has been
around since Oracle 7, and not part of SQLT) , then we’ll look at TRCASPLIT, which is used to separate 10046 and
(usually) 10053 trace information. Consider this method the simplest of the advanced tools. Then we’ll look at
collecting 10053 trace. TRCANLZR is the next step, and it works from a single or multiple files to produce an extended
version of TKPROF. TRCANLZR is part of SQLT unlike TKPROF.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

232

Finally we’ll talk about TRCAXTR, which combines TRCANLZR and XTRACT to produce a report on multiple
SQLs. Each of these sections will be explained with the aid of an example SQL.

10046 Trace
10046 is essentially a low-level logging facility of the activity of the Oracle engine while it is processing your SQL
statement. It produces a file called a “trace” file, which is a text file, with details of the low-level step of the execution.
This trace can be configured (depending on the trace level selected) to collect wait events, bind variables, and bind
values (see below for the different levels that can be selected). There is an overhead in collecting this information,
and it can consume a considerable amount of disk space and take resources away from the executing statement in
producing the trace file.

Why Collect 10046 Trace?
Collecting 10046 trace is not an activity to take lightly. As mentioned above it can take considerable resource
(especially disk space). Considering the overhead in collecting 10046 trace you would not lightly choose to collect
this information. It would not normally be collected unless there was a good reason. To investigate tuning problems
that are not solvable by looking at the high-level aggregated information, 10046 trace is specifically collected. In these
more difficult cases some low-level piece of information (which is lost in the aggregation) is needed as a vital clue in
the puzzle we are solving. This is because it contains very detailed information of what is happening during the SQL
execution.

The 10046 trace can also be produced by enabling trace in other ways, such as at system level or by tracing
another session instead of your own. The information collected is the same and the decode is the same; only the
method of initiating the trace will change. In each case the trace file is a stand-alone file found in the user_dump_dest
area (controlled by the parameter diagnostic_dest for 11g Release 1 and above).

10046 Decode
Some people will read 10046 directly; this can be useful, as it contains low-level information that is sometimes not
included in an aggregation (this is the nature of aggregation). This is a typical snippet of a SQL 10046 trace file.

EXEC #1:c=0,e=162,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=2938593747,tim=6801557607
WAIT #1: nam='SQL*Net message to client' ela= 6 driver id=1111838976 #bytes=1 p3=0 obj#=-1
tim=6801557680
WAIT #1: nam='Disk file operations I/O' ela= 821 FileOperation=2 fileno=5 filetype=2 obj#=-1
tim=6801559064
*** 2012-12-26 09:59:43.625
WAIT #1: nam='asynch descriptor resize' ela= 4 outstanding #aio=0 current aio limit=4294967295 new
aio limit=257 obj#=-1 tim=6802577972
WAIT #1: nam='asynch descriptor resize' ela= 2 outstanding #aio=0 current aio limit=4294967295 new
aio limit=257 obj#=-1 tim=6802578401
FETCH #1:c=0,e=1020838,p=0,cr=3180,cu=0,mis=0,r=1,dep=0,og=1,plh=2938593747,tim=6802578585
WAIT #1: nam='SQL*Net message from client' ela= 302 driver id=1111838976 #bytes=1 p3=0 obj#=-1
tim=6802578974
WAIT #1: nam='SQL*Net message to client' ela= 3 driver id=1111838976 #bytes=1 p3=0 obj#=-1
tim=6802579032
FETCH #1:c=0,e=45,p=0,cr=0,cu=0,mis=0,r=6,dep=0,og=1,plh=2938593747,tim=6802579064
STAT #1 id=1 cnt=7 pid=0 pos=1 obj=0 op='SORT ORDER BY (cr=3180 pr=0 pw=0 time=0 us cost=947
size=315 card=9)'

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

233

STAT #1 id=2 cnt=7 pid=1 pos=1 obj=0 op='HASH GROUP BY (cr=3180 pr=0 pw=0 time=18 us cost=947
size=315 card=9)'
STAT #1 id=3 cnt=250069 pid=2 pos=1 obj=0 op='HASH JOIN (cr=3180 pr=0 pw=0 time=1261090 us cost=909
size=15233435 card=435241)'

Easy to understand, right? In the subsections below I have produced a 10046 trace file we can use to see the sort
of sections that appear in a trace file and do at least a partial decode. Here is the SQL example:

SQL> alter session set events '10046 trace name context forever, level 64';

Session altered.

SQL> select count(*) from sh.sales;

 COUNT(*)

 918843

SQL> exit
I’ve broken the decode of a 10046 trace file into three main sections. The header, the main section record format

and the decode of the details on each line.

The Header

Although the header itself is not part of the SQL execution it is important that you look at the header. Here is an
example header of the SQL I have executed.

Trace file f:\app\stelios\diag\rdbms\snc1\snc1\trace\snc1_ora_7892.trc
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Windows XP Version V5.1 Service Pack 3
CPU : 2 - type 586, 2 Physical Cores
Process Affinity : 0x0x00000000
Memory (Avail/Total): Ph:988M/3455M, Ph+PgF:2515M/5337M, VA:1251M/2047M
Instance name: snc1
Redo thread mounted by this instance: 1
Oracle process number: 20
Windows thread id: 7892, image: ORACLE.EXE (SHAD)

 *** 2013-02-03 12:41:50.754
*** SESSION ID:(16.15175) 2013-02-03 12:41:50.754
*** CLIENT ID:() 2013-02-03 12:41:50.754
*** SERVICE NAME:(SYS$USERS) 2013-02-03 12:41:50.754
*** MODULE NAME:(sqlplus.exe) 2013-02-03 12:41:50.754
*** ACTION NAME:() 2013-02-03 12:41:50.754

The header section sets the stage for the information to follow. This should be checked to make sure you are
looking at the correct trace file. For example the right instance, and the right time. This section also gives you some
basic information about the resources on the node you are on such as the memory available see the “Memory
(Avail/Total)” line and the number of CPUs. The 10046 trace starts immediately after this section.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

234

The Main 10046 Tracing Section

Once we get into the main 10046 trace section we see a single line for each piece of information bounded by a divider.
An example is shown. I’ve truncated the lines on the right because we are concentrating on the text at the beginning of
the line and emphasising the trace file has a logical structure. We see at the beginning of each line the code words:

==============
PARSING IN CURSOR – Gives you the cursor number
select - This is statement being issued on your behalf
END OF STMT – The end of the SQL statement is marked
PARSE – Now we parse the statement
EXEC – Now we execute the statement
FETCH – Now we fetch rows for the statement
STAT – Status information
WAIT – Wait for something
XCTEND - Transaction ends
CLOSE – Close the cursor we are finished with this statement.
==============

Here is what it looks like in the raw form (I’ve truncated the lines on the right to makes it less confusing).

CLOSE #2:c=0,e=19,dep=0,type=1,tim=839550052037
=====================
PARSING IN CURSOR #2 len=29 dep=0 uid=0 oct=3 lid=0 tim=843704111499 hv=3864810328
select count(*) from sh.sales
END OF STMT
PARSE #2:c=0,e=88,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1123225294,tim=843704111495
EXEC #2:c=0,e=134,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1123225294,tim=843704111781
WAIT #2: nam='SQL*Net message to client' ela= 10 driver id=1111838976 #bytes=1 p3=0
FETCH #2:c=0,e=2502,p=0,cr=140,cu=0,mis=0,r=1,dep=0,og=1,plh=1123225294,tim=843704114422
STAT #2 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=140 pr=0 pw=0 time=0 us)'
STAT #2 id=2 cnt=54 pid=1 pos=1 obj=0 op='PARTITION RANGE ALL PARTITION: 1 28 (cr=140
STAT #2 id=3 cnt=54 pid=2 pos=1 obj=0 op='BITMAP CONVERSION COUNT (cr=140 pr=0 pw=0 t
STAT #2 id=4 cnt=54 pid=3 pos=1 obj=74275 op='BITMAP INDEX FAST FULL SCAN SALES_PROMO
WAIT #2: nam='SQL*Net message from client' ela= 301 driver id=1111838976 #bytes=1 p3=0
FETCH #2:c=0,e=5,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,plh=1123225294,tim=843704115083
WAIT #2: nam='SQL*Net message to client' ela= 5 driver id=1111838976 #bytes=1 p3=0 ob

*** 2013-02-03 13:51:07.597
WAIT #2: nam='SQL*Net message from client' ela= 2865946 driver id=1111838976 #bytes=1
XCTEND rlbk=0, rd_only=1, tim=843706981465
CLOSE #2:c=0,e=31,dep=0,type=0,tim=843706981612

Although the raw 10046 trace can look intimidating, it has the huge advantage that it is logical in its layout. This
makes it relatively easy to decode with utilities. For example TKPROF (which we’ll mention later) can read this raw
file and produce an aggregated file. The downside of such facilities is that the interpretation of the file may leave out
details you need or the decode can be wrong, causing you to see the wrong information and possibly come to the
wrong conclusion.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

235

Decoding Records and Keywords

The main 10046 tracing section consists of record keywords (at the beginning of a line) and keywords within the
record (detail keywords), which give detailed information about what is happening. Table 13-1 provides the decodes
for the record keywords.

Table 13-1. The 10046 Record Keywords

Record Keyword Description

APPNAME Application name setting

PARSING IN CURSOR #n The cursor number which is currently being parsed

PARSE ERROR Seen if there is a parsing error

ERROR Seen if there is an error

END OF STMT The end of the SQL statement is marked

PARSE #n The cursor number being parsed

BINDS #n Shows the binds information if selected

EXEC #n The cursor number being executed

FETCH #n The cursor number for which we are fetching rows

RPC Remote procedure call

SORT UNMAP Closing operating system temporary files

STAT #n Status information for the cursor number

UNMAP Closing of a temporary segment

CLOSE #n Close the cursor, we are finished with this statement

WAIT #n A wait event

XCTEND Transaction end

Detail Keyword Description

act Action

ad Address of SQL

c The number of CPU seconds used

card Estimated cardinality

cnt Number of rows

cost Optimizer cost

cr The number of consistent reads

cu Current mode consistent reads

dep The depth of the cursor. 0 represents a top level statement. dep=1 and 2 indicate trigger
involvement and dep=3 represents a trigger called from a trigger.

(continued)

The detail keywords occur within the record itself and are preceded by record keywords. The table below covers
the majority of the keywords used; however, there may be others.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

236

Detail Keyword Description

dty Data Type

e Elapsed time in microseconds

err Standard Error code

flg Flag indicating bind status

hv Hash value

len The character count of the string representing the SQL statement

lid Privilege user ID

mis Number of shared pool misses

mod Module name

mx1 Maximum length of bind variables

oct The Oracle command type (2=insert, 3=select, 6=update, 7=delete, 26=lock table,
35=alter database, 42=alter session, 44=commit, 47=anonymous block, 45=rollback)

nam Name of the wait

oacflg Bind options

obj Object ID

og Optimizer goal. 1=ALL_ROWS, 2=FIRST_ROWS, 3=RULE, 4=CHOOSE

op The operation being done. Examples are PARTITION RANGE ALL, SORT AGGREGATE etc.

p Physical blocks read from disk

p1, p2, p3 Parameter for a given wait

pr Physical reads

pre Precision

pid Parent ID of the row source

pw Physical writes

r Number of rows returned

rd_only No data changed in the database on commit

rlbk Rollback. 0=Commit, 1=Rollback

size Estimated size in bytes

sqlid The SQL ID inside single quotes

tim The time stamp. Measured in 1 millionths of a second.

time Elapsed time in microseconds

uid The user Id of the schema doing the parsing

value The value of a bind variable

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

237

So, for example, given this line in the raw 10046 trace file:

PARSE #2:c=0,e=88,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1123225294,tim=843704111495

We could translate this into:
“We are parsing in cursor number2, which was issued directly from the application, the elapsed time was 88

microseconds and no physical reads were done, nor any consistent reads or current mode reads. The cursor was not
hard parsed and no rows were returned, the depth of the cursor was top level, and the optimizer goal was ALL_ROWS
for the plan hash value 1123225294, the time stamp was 843704111495.”

As you can see, this dense tracing information has a lot of information in it. A number of tools have grown up
around interpreting this and managing the information. But why do we need this trace file in the first place?

How Do We Collect 10046 Trace
There are different ways 10046 can be collected and at different levels. If you have the luxury of being able to execute
the SQL statement directly, then you can collect SQL trace with:

SQL> alter session set sql_trace=true

To turn this off

SQL> alter session set sql_trace=false

Or if you want to adjust the level of trace (discussed below):

SQL> alter session set events '10046 trace name context forever, level n'

To turn this off:

SQL> alter session set events '10046 trace name context off'

You can also enable trace for another session (with pid n) with an oradebug command.

SQL> oradebug setorapid n
SQL> oradebug event 10046 trace name contect forever, level m;

This issues the trace for the pid n to 10046 trace level m.
You can even trace a session with a log on trigger, that is a trigger, which is fired when a session logs into the

database. Before the user session begins some commands are carried out which enable tracing for that session. The
“triggering” code usually begins with something like this:

Create or replace trigger Start_10046_trace after logon on database
 begin
 execute immediate 'alter session set timed_statistics=true';
 execute immediate 'alter session set events "10046 trace name context forever, level 4" '
end;

The above trigger will trace every session that logs into the database, you may want to restrict the collection of
trace information by checking on the user or some other user context to limit the amount of trace collected. You may

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

238

also want to identify each trace file and set the file size to unlimited. In these cases you should add code such as this
before the 10046 trace command:

execute immediate 'alter session set max_dump_file_size=unlimited';

and/or

execute immediate 'alter session set tracefile_identifier="My_trace"';

Different Levels of Trace

Different types of information are collected for different investigations. Here are the levels and what they do as of 11g.
The default collects the least information, thus protecting you from excessive size of trace files. With option 4 you also
collect information on bind variables

01 – Default•

04 – Standard plus binds•

With this level of parsing we see a BINDS section•

BINDS #1:
 Bind#0
 oacdty=02 mxl=22(22) mxlc=00 mal=00 scl=00 pre=00
 oacflg=03 fl2=1000000 frm=00 csi=00 siz=24 off=0
 kxsbbbfp=0e90cbb8 bln=22 avl=02 flg=05
 value=100

8 – Standard plus waits•

With this level of tracing we see the waits indicating where we spend the time in the statement•

12 – Standard plus waits and binds•

With this level we collect not only the binds but also the waits•

16 – Generate STAT line dumps for each execution•

32 – Never dump execution statistics•

64 – Adaptive dump of STAT lines (11.2.0.2+)•

A typical example of generating this trace would be as follows:

1. Find the location of USER_DUMP_DEST

2. Set the file size to unlimited if possible

3. Set the statistics level to all

4. Select the tracing level based on the values above

Here is an example set of steps, beginning with setting the identifier for the trace file name, which will allow you
to easily find the trace file.

1. Set the identifier:

SQL> alter session set tracefile_identifier='10046_STELIOS';
Session altered.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

239

2. Now I want to make sure I don’t lose information if the trace file is too long, so I set the size
to unlimited.

SQL> alter session set max_dump_file_size=unlimited;
Session altered.

3. Set the statistics_level parameter to all to collect as much information as possible.

SQL> alter session set statistics_level=all;
Session altered.

4. Now set the 10046 trace event to collect tracing information at level 12 (which includes
binds and waits).

SQL> alter session set events '10046 trace name context forever, level 12';
Session altered.

5. Now I execute my SQL

SQL> @q3

COUNTRY_NAME SUM(AMOUNT_SOLD)
-- ----------------
Poland 8447.14
Denmark 1977764.79
Spain 2090863.44
France 3776270.13
Italy 4854505.28
United Kingdom 6393762.94
Germany 9210129.22

7 rows selected.

6. Then turn off the tracing

SQL> alter session set events '10046 trace name context off';

This is the SQL that ran:

select
 country_name, sum(AMOUNT_SOLD)
from sh.sales s, sh.customers c, sh.countries co
where
 s.cust_id=c.cust_id
 and co.country_id=c.country_id
 and country_name in (
 'Ireland','Denmark','Poland','United Kingdom',
 'Germany','France','Spain','The Netherlands','Italy')
 group by country_name order by sum(AMOUNT_SOLD);

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

240

NOTE ■ If you want to follow along with these examples and collect your own trace files and view them yourself

you can easily do so by using all the code in these examples. All of the data and examples used rely on the standard

example schemas shipped with every database installation. If you do not have the schemas SH and HR you can either

select to install the example schemas at installation time or manually add them afterward with the instructions here

http://docs.oracle.com/cd/E14072_01/server.112/e10831/installation.htm#sthref33.

7. Finally I want to find the file so I look at the value of user_dump_dest

SQL> show parameter user_dump_dest

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
user_dump_dest string f:\app\stelios\diag\rdbms\snc1
 \snc1\trace

This is all very well if you want to look at raw 10046 trace files, but what if you wanted to interpret what was going
on more quickly? First we’ll look at one of the oldest utilities around for procesing 10046 trace, TKPROF, which is still
used today to get a good overview of what has been happening. TKPROF is not part of SQLT; but as it is commonly
used, we’ll give it a brief mention.

TKPROF
No doubt some people can read 10046 trace files in the raw (and it wouldn’t be too difficult to do once you gather
the translation of the short codes), but this is a pretty inefficient way of going about things. It would be like listing
the position, velocity, and direction of every atom in a football, when in fact you could aggregate the information to
describe the ball’s trajectory with just a few parameters. TKPROF aggregates information and presents a summary of
the high-level view of what’s going on. TKPROF is not part of SQLT and has been in existence since early versions of
Oracle. TKPROF is best explained through the use of an example: we’ll take a trace file produced as desribed above
and generate the TKPROF output. To use TKPROF just run the TKPROF command with the input of the trace file.

>tkprof trca_e68572_10046.trc output = trca_e68572_10046.txt
TKPROF: Release 11.2.0.1.0 - Development on Wed Dec 26 11:08:49 2012
Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.

If we look at the TKPROF output file and find our SQL, we then see this kind of information:

select
 country_name, sum(AMOUNT_SOLD)
from sh.sales s, sh.customers c, sh.countries co
where
 s.cust_id=c.cust_id
 and co.country_id=c.country_id
 and country_name in (
 'Ireland','Denmark','Poland','United Kingdom',
 'Germany','France','Spain','The Netherlands','Italy')
 group by country_name order by sum(AMOUNT_SOLD)

http://docs.oracle.com/cd/E14072_01/server.112/e10831/installation.htm#sthref33

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

241

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.09 0.09 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 12.20 12.24 0 3180 0 7
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 12.29 12.34 0 3180 0 7

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYS

Rows Row Source Operation
------- ---
 7 SORT ORDER BY (cr=3180 pr=0 pw=0 time=15 us cost=947 size=315 card=9)
 7 HASH GROUP BY (cr=3180 pr=0 pw=0 time=21 us cost=947 size=315 card=9)
250069 HASH JOIN (cr=3180 pr=0 pw=0 time=11059983 us cost=909 size=15233435 card=435241)
30473 HASH JOIN (cr=1462 pr=0 pw=0 time=453228 us cost=409 size=657225 card=26289)
 9 TABLE ACCESS FULL COUNTRIES (cr=3 pr=0 pw=0 time=20 us cost=3 size=135 card=9)
55500 TABLE ACCESS FULL CUSTOMERS (cr=1459 pr=0 pw=0 time=112536 us cost=406 size=555000 card=55500)
918843 PARTITION RANGE ALL PARTITION: 1 28 (cr=1718 pr=0 pw=0 time=5428724 us cost=494 size=9188430
card=918843)
918843 TABLE ACCESS FULL SALES PARTITION: 1 28 (cr=1718 pr=0 pw=0 time=1892572 us cost=494
size=9188430 card=918843)

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to client 2 0.00 0.00
 asynch descriptor resize 3 0.00 0.00
 SQL*Net message from client 2 574.61 574.61
**

In the TKPROF of the SQL we see the SQL statement, a summary section that describes the execution times for
“Parse”, “Execute”, and “Fetch”, as well as an execution plan and a brief description of the wait times. Compare this
kind of information with the sections on 10046 trace file interpretation. Which do you think would be faster? I know
which one I prefer to look at. That kind of aggregation of information makes interpretation of what is happening much
simpler and faster. Now that we’ve briefly mentioned 10046 tracing (and we mentioned 10053 tracing in chapter 5), we
look at what TRCASPLIT can do for us.

TRCASPLIT
TRCASPLIT the first of the trace utilities available in SQLT simply separates 10046 trace from other trace. While this
may be a simple task in theory it would be very difficult and error prone to do manually. TRCASPLIT does the job in
no time and presents you with the results in a zip file. First let me show you what we are going to collect, then we will
collect it. Then we will split it using TRCASPLIT.

In this example we are going to collect both 10046 and 10053 trace file information. In other words we are turning
on debugging information for both running the SQL and for parsing it. As before we will also ensure that the dump file
is not truncated by setting the dump file size to unlimited, and we’ll also set the statistics collection level to the highest
possible level of all.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

242

SQL> alter session set tracefile_identifier='10046_10053';
Session altered.
SQL> alter session set max_dump_file_size=unlimited;
Session altered.
SQL> alter session set statistics_level=all;
Session altered.
SQL> alter session set events '10046 trace name context forever, level 12';
Session altered.
SQL> alter session set events '10053 trace name context forever, level 1';
Session altered.
SQL> alter system flush shared_pool;
System altered.
SQL> @q3

I’m sure we don’t need to see the results of this query again. What we do need to look at is the trace file created.
In the trace file we see sections which are clearly 10046 type lines such as:

STAT #1 id=6 cnt=55500 pid=4 pos=2 obj=74151 op='TABLE ACCESS FULL CUSTOMERS (cr=1459 pr=0 pw=0
time=112536 us cost=406 size=555000 card=55500)'
STAT #1 id=7 cnt=918843 pid=3 pos=2 obj=0 op='PARTITION RANGE ALL PARTITION: 1 28 (cr=1718 pr=0 pw=0
time=5428724 us cost=494 size=9188430 card=918843)'
STAT #1 id=8 cnt=918843 pid=7 pos=1 obj=74083 op='TABLE ACCESS FULL SALES PARTITION: 1 28 (cr=1718
pr=0 pw=0 time=1892572 us cost=494 size=9188430 card=918843)'

These are related to 10046 tracing, but we also see:

PARAMETERS USED BY THE OPTIMIZER

 PARAMETERS WITH ALTERED VALUES

Compilation Environment Dump
sqlstat_enabled = true
optimizer_dynamic_sampling = 4
statistics_level = all

These lines are recognizable as 10053 tracing. We don’t see any of the logical 10046 tracing information related to
the execution lines of code and waits. There are no codes at the beginning of lines related to what is happening. Any
program designed to decode 10046 would have to stop and ask for help at this point, but TRACSPLIT helps us by sifting
the two types of information. To split these we need only run sqltrcasplit.sql. In this example I’ve copied the trace
file produced in the trace directory to the local directory. There is only one parameter to pass to sqltrcasplit.sql, the
name of the trace file that needs to be split.

C:\Documents and Settings\Stelios\Desktop\SQLT 11.4.5.1\sqlt\run>sqlplus stelios/password
SQL*Plus: Release 11.2.0.1.0 Production on Wed Dec 26 10:50:43 2012
Copyright (c) 1982, 2010, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> @sqltrcasplit.sql

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

243

PL/SQL procedure successfully completed.
Parameter 1:
Trace Filename (required)
Enter value for 1:
Enter value for 1: snc1_ora_2796_10046_10053.trc
Value passed to sqltrcasplit.sql:
TRACE_FILENAME: snc1_ora_2796_10046_10053.trc
PL/SQL procedure successfully completed.
Splitting snc1_ora_2796_10046_10053.trc

*** NOTE:
*** If you get error below it means SQLTXPLAIN is not installed:
*** PLS-00201: identifier 'SQLTXADMIN.SQLT$A' must be declared.
*** In such case look for errors in NN_*.log files created during install.

SQLT_VERSION
--
SQLT version number: 11.4.5.1
SQLT version date : 2012-11-27
Installation date : 2012-12-26/08:20:26
... please wait ...
To monitor progress, login into another session and execute:
SQL> SELECT * FROM SQLTXADMIN.trca$_log_v;
... splitting trace(s) ...
Execution ID: 68572 started at 2012-12-26 10:57:15
In case of premature termination, read trcanlzr_error.log located in SQL*Plus default directory
/***/
10:57:15 => trcanlzr
10:57:15 file_name:"snc1_ora_2796_10046_10053.trc"
10:57:15 analyze:"NO"
10:57:15 split:"YES"
10:57:15 tool_execution_id:"68572"
10:57:15 directory_alias_in:"SQLT$STAGE"
10:57:15 file_name_log:""
10:57:15 file_name_html:""
10:57:15 file_name_txt:""
10:57:15 file_name_10046:""
10:57:15 file_name_10053:""
10:57:15 out_file_identifier:""
10:57:15 calling trca$p.parse_main
10:57:15 => parse_main
10:57:15 analyzing input file snc1_ora_2796_10046_10053.trc in f:\app\stelios\diag\rdbms\snc1\snc1\
trace (SQLT$STAGE)
10:57:15 -> parse_file
10:57:15 parsing file snc1_ora_2796_10046_10053.trc in f:\app\stelios\diag\rdbms\snc1\snc1\trace
10:57:32 parsed snc1_ora_2796_10046_10053.trc (input 11167513 bytes, parsed as 11167513 bytes)
10:57:32 <- parse_file
10:57:32 parsed 1 file(s) (input 11167513 bytes)
10:57:32 first trace: f:\app\stelios\diag\rdbms\snc1\snc1\trace\snc1_ora_2796_10046_10053.trc
10:57:32 <= parse_main
10:57:32 <= trcanlzr
/***/

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

244

Trace Analyzer executed successfully.
There are no fatal errors in this log file.
Execution ID: 68572 completed at 2012-12-26 10:57:32
Trace Split completed.
Review first sqltrcasplit_error.log file for possible fatal errors.
Review next trca_e68572.log for parsing messages and totals.
Copying now generated files into local directory
 adding: trca_e68572.log (164 bytes security) (deflated 65%)
 adding: trca_e68572_10046.trc (164 bytes security) (deflated 93%)
 adding: trca_e68572_not_10046.trc (164 bytes security) (deflated 91%)
 adding: sqltrcasplit_error.log (164 bytes security) (deflated 79%)
deleting: sqltrcasplit_error.log
File trca_e68572.zip has been created.
SQLTRCASPLIT completed.

Once the script has finished, I have a zip file in the local directory called trca_e68572.zip (in my example)
containing the results of the split. If I create a directory and put the files from the zip file in this directory I see that
there are two files. One is named trca_e68572_10046.trc and one is named trca_e68572_not_10046.trc. Now we
can look at the 10046 trace file without the 10053 trace information making the interpretation less difficult.

TRCANLZR
TRCANLZR is used to analyze multiple trace files and generate one aggregated form of information. In the example
below I have added a parallel hint to force parallel execution and multiple trace files. This is the SQL I used with the
hint in place.

select /*+ parallel (s, 2) */
 country_name, sum(AMOUNT_SOLD)
from sh.sales s, sh.customers c, sh.countries co
where
 s.cust_id=c.cust_id
 and co.country_id=c.country_id
 and country_name in (
 'Ireland','Denmark','Poland','United Kingdom',
 'Germany','France','Spain','The Netherlands','Italy')
 group by country_name order by sum(AMOUNT_SOLD);

Once I have enabled tracing for 10046 (see the earlier section “How Do We Collect 10046 Trace”) I have a
number of trace files in the trace directory. To allow TRCANLZR to know which files to analyze I created a text file
called control.txt that lists the file names in the trace directory that relate to the execution of the SQL. This is what
control.txt contains.

snc1_p003_3480_10046.trc
snc1_p003_3480.trc
snc1_p002_5284_10046.trc
snc1_p002_5284.trc
snc1_p001_4320_10046.trc
snc1_p001_4320.trc
snc1_p000_3600_10046.trc
snc1_p000_3600.trc
snc1_j000_4656.trc

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

245

By the way the file name control.txt is hard-coded and part of SQLT. You have to use this file name. Also notice
in this case that some of the files contain the text “10046” and some do not. Remember that 10046 trace files will not
usually have the text 10046 in the name unless you specify it with:

alter session set tracefile_identifier='10046'

When I run sqltracnlzr.sql I am prompted for a control file name or a trace file to analyze. In my case I have
a number of trace files so I entered control.txt. This file is located in the same directory as the trace files. The
execution of sqltrcanlzr finishes with the following screen.

 adding: trca_e68578.html (164 bytes security) (deflated 92%)
 adding: trca_e68578.log (164 bytes security) (deflated 90%)
 adding: trca_e68578.txt (164 bytes security) (deflated 87%)
 adding: trca_e68578_nosort.tkprof (164 bytes security) (deflated 78%)
 adding: trca_e68578_sort.tkprof (164 bytes security) (deflated 78%)
 adding: sqltrcanlzr_error.log (164 bytes security) (deflated 86%)
deleting: sqltrcanlzr_error.log

File trca_e68578.zip has been created.

SQLTRCANLZR completed.

In the run directory of SQLT I now have a zip file, which as usual I create a directory for and unzip the files into
that directory. The HTML file in this directory is the Trace Analyzer file. It starts with the list of trace files it analyzed.
See Figure 13-1.

Figure 13-1. The top of the TRCANLZR report

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

246

Look at Figure 13-2. There are many sections here all with useful information. The first is the “Glossary of Terms
Used”. You might be tempted to go straight to the “Response Time Summary” as the “Glossary of Terms Used” sounds
boring. If you did go to the “Glossary of Terms Used,” on first glance it looks like there is not much there. See Figure 13-3.
Understanding exactly what each of the terms used is crucial to your understanding of the report and so the “Glossary
of Terms Used” should be examined. You just need to click on the plus under the heading to get the details. See
Figure 13-3, which shows the screen after I expand the section.

Figure 13-2. The header section includes the links to other parts of the report

This list at the top of the file ensures that we have the right TRCANLZR output. Below this is a summary of the
sections of the report that can be reached. See Figure 13-2.

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

247

Figure 13-3. The glossary of terms used is not normally displayed

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

248

The reason I mention the glossary of terms is because TRCANLZR needs to be interpreted correctly. There are
many measures of time and each one needs to be understood for you to get the right picture of what is happening. For
example the “response time” is the measure of time that the user perceives if they were sitting at a terminal running
the SQL. That time is made up of actual work (Elapsed) and non-idle wait times. Idle wait times can be ignored as
they are due the end user not responding (normally shown as SQL*Net message from client). Non-idle wait times
are usually made up of activities that happen during steps in the SQL, for example fetching data from a disk. Once
we have these definitions clear we can look at the “Response Time Summary”. Look at Figure 13-4, which shows an
example response time summary for the SQL (this is for a simple SQL with no complications).

Figure 13-4. The response time summary shown

This response time summary shows the following

The CPU time was 194.768 seconds•

Non-idle wait time was 0.029 seconds•

Unaccounted for elapsed time was 0.613 seconds•

The percentage of each of the above times•

The total elapsed time which is a sum of the CPU Time, Non-idle Wait time and The •
unaccounted for Time in this example 195.411

Idle wait time was 0.084 seconds•

Unaccounted for time was 0.1 seconds•

The total time for everything was 195.595 seconds•

This is an aggregation of all the information from all trace files. This gives you an idea of where your time is going
and which item in the list above is worth attacking. In this case 99.6% of all time is spent on the CPU so if there is
any improvement that is where it will be made. This kind of report also lists all the related SQL (if it is recursive for
example), so you will see a “Top SQL” section of this report (see Figure 13-5).

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

249

TRCAXTR
TRCAXTR is a combination report, which takes the same parameters are TRCANLZR (as described in the section
above) but then determines the top SQL from the report and runs that through XTRACT. In the case above the top SQL
would be the one under the heading “SQL Text” in Figure 13-5. You run sqltrcxtr.sql by entering the following on
the command line

SQL> @sqltrcxtr.sql

You will be prompted for the same parameters as for TRCANLZR but after that ends you will be prompted for the
parameters to run XTRACT.

Here are the parameters that you will be prompted for

The file containing the trace file or control file containing the trace files (as was mentioned •
earlier control.txt is the ‘control’ file and can contain multiple trace file names)

The SQLTXPLAIN password•

The process is very long, because it goes through all the trace files generating XTRACTs for each SQL. The top
level zip file is called sqlt_snnnnn_set.zip. This files contains all the XTRACTs for each of the SQLs in the trace file.
This simple routine, with very few parameters can produce many many files to analyze. It can be a quick way to collect
information for a whole session, but be warned the the zip files produced can be very big.

Modifying SQLT Behavior
SQLT has many aspects to it and many tools that can be used. Despite this there are still situations where SQLT could
do better or be modified to help with some situation. Luckily this is covered by the parameters which can be set to
change SQLT’s behavior. If we look at the now familiar first page of the main report (see Figure 13-6), we see the “Tool
Configuration Parameters” link.

Figure 13-5. The “Top SQL” section of the TRCANLZR report

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

250

If we click on this link we see the list of parameters that can be set within SQLT to change behavior or options.
Many of the options here turn on features or turn off features, such as ash_reports. The “Domain” column lists the
possible values, in this case “Y” or “N”.

Figure 13-6. The Tool configuration option is under the Global section

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

251

If you are in doubt of the meaning of these parameters then you can just hover your mouse over the parameter
and the descriptive comment will be shown. You can see that in Figure 13-8. (For your convenience, Appendix C
includes a full list of these parameters and their descriptions.)

Figure 13-7. The first page of configuration parameters

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

252

These parameters make the SQLT utility even more flexible and useful than it would otherwise be. At the end of
the second page (see Figure 13-9) we see that the way to set these parameters is described:

Figure 13-9. The second page of configuration parameters

Figure 13-8. Hover the mouse over the parameter names to get detailed descriptions

CHAPTER 13 ■ TRACE FILES, TRCANLZR AND MODIFYING SQLT BEHAVIOR

253

To set the value for the tool for all sessions:

SQL> EXEC SQLTXADMIN.sqlt$a.set_param('Name', 'Value');

And to set the value for one session only:

SQL> EXEC SQLTXADMIN.sqlt$a.set_sess_param('Name', 'Value');

With these options available we can, for example, make smaller test cases, or limit the number of AWR records
reviewed or exclude the test case builder.

Summary
In this chapter we covered the use of the tools to analyze trace files which are available in SQLT. These are special tools over
and above what TKPROF can offer and are useful in cases where you have 10046 trace files to analyze. SQLT XTRACT is
still the best tool for helping with tuning in most cases, but sometimes you have a busy system which does not show
a specific SQL to investigate. In cases such as these TRCANLZR can help to find the SQL which is the problem. If you
use TRCAXTR as well then you can combine the best of both worlds.

255

CHAPTER 14

Running a Health Check

The SQL health check script is not SQLT. It is a completely separate utility downloaded from a different Metalink note
and used in a different way. Why is it even mentioned in this book? SQLHC is considered a backup option when SQLT
cannot be installed. This does not happen very often, but when it does it is usually because of site restrictions. There
are many reasons for this:

Not allowed to install anything on production (security reasons).•

Not allowed to install anything on production (fear of affecting production).•

Installation and testing procedures take too long and you have a problem on production.•

Don’t trust SQLT.•

SQLT is too complicated.•

Not enough space to install SQLT.•

Let me start by saying that SQLT has a small footprint and has been tried and tested on many different systems.
Business reasons may preclude the installation of new packages in a timely manner: for example, if you have to test on
development and QA before you can get to production. If you have those rules in place you should honor those business
rules or local IT standards and consider using the health check script instead. However, I hope I’ve shown that SQLT is
a trustworthy tool with many benefits for the user. If you come across a situation in which the use of SQLT is prohibited,
then you can still choose the second best option, which is to run a SQL health check script against the target SQL.

What Is SQL Health Check?
The SQL health check (SQLHC) script is available as a free download from Oracle Metalink note 1366133.1. It is a zip
file containing three simple SQL scripts (sqldx.sql, sqlhc.sql and sqlhcxec.sql) that you run as sys on the target
system. Until recently sqlhc.sql was only script, so we’ll talk about that script mostly and cover the other scripts later
in this chapter. With all of these scripts nothing is installed: they are just SQL scripts and are very simple to use. These
scripts were developed in response to the requirements on some sites that precluded the installation of SQLT (which
has a schema, schema objects, tables and indexes, packages and functions). Because a script such as sqlhc.sql is just
a simple script, more sites will accept it for installation so more sites can take advantage of the recommendations that
come from SQLHC. SQLHC was developed from SQLT (it provides a subset of SQLT’s functionality) and so discussions
of what SQLHC can do cover many of the topics already covered in this book.

Here are some of the sections covered in a SQL health check report:

An observation report, similar to SQLT but limited because of the limited access to the database.•

The SQL text.•

A summary of the table information including the number of rows and statistical sampling size.•

CHAPTER 14 ■ RUNNING A HEALTH CHECK

256

The number of columns and histograms for each table.•

A summary of all the index information for each table.•

A description of SQL plan baselines and profiles that are used for the SQL.•

The status of cursor sharing and the reasons for sharing.•

A history of the SQL Plans with associated statistics.•

A history of the execution plans.•

Active session history information.•

Column statistics and histogram types.•

System parameters and their values and default or non-default nature.•

A detailed description of all the execution plans.•

A SQL monitor report of the SQL.•

The above functionality is produced by the main script of SQLHC, which is sqlhc.sql: in fact, the previous
versions of SQLHC consisted of only this script. Later versions also included sqldx.sql and sqlhcxec.sql. The sqldx
routine is a superb utility that produces a test case with no dependence on SQLT. We’ll talk more about that in the
section “The sqldx.sql Script.” We’ll also cover sqlhcxec. For now let’s look at the main script sqlhc.sql. The first step
in any tuning exercise should be to look for the obviously wrong things. This is called a checklist: why go into a long
tuning exercise when you’re missing an obvious index?

The list of things that can be done incorrectly on a database or on any particular SQL is very long. The health
check script and SQLT have these error checks built in. SQLHC has approximately a hundred checks that it carries out
(SQLT has two to three times that many). With these built in checks you can find and fix those problems before you
start any tuning exercise. In SQLT these errors are pointed out in the “Observations” section of the main report
(see Chapter 1). In SQLHC there is also an observations section of the report in the first page of the SQLHC HTML file.
If only a few of your SQLs are caught before they go to production with some “obvious” mistakes, it will be well worth
your time to download and use the SQL health check scripts.

The sqlhc.sql Script
The sqlhc.sql script is a single SQL script that produces one zip file, which contains four HTML files, three zip files
and one trace file. If you do nothing else but run sqlhc.sql on each new SQL you introduce to your system, the health
check script will have been worth the effort. The HTML files are reports in their own right and are well worth a careful
read. The sqlhc.sql script is easy to use and takes only two parameters (we’ll look at an example run later in this
chapter in the section “Running the SQLHC Script.”)

Remember that these files can be reviewed in any order, and one does not depend on another. If you have a
particular area you want to check, you can look at the appropriate file directly without looking at files in between.
However, if you want to be thorough and check everything, the main HTML files are numbered for your convenience.
Example file names are shown below:

• sqlhcxec_20130103_205245_81s67vj4pjqm8_1_health_check.html

• sqlhcxec_20130103_205245_81s67vj4pjqm8_2_diagnostics.html

• sqlhcxec_20130103_205245_81s67vj4pjqm8_3_execution_plans.html

• sqlhcxec_20130103_205245_81s67vj4pjqm8_4_sql_detail.html

We’ll look at all the files produced by sqlhc.sql in the next section.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

257

What sqlhc.sql Produces
This section describes the main report files. The first four files mentioned are the HTML pages created by sqlhc.sql. They
all contain the SQL text so you can make sure you’re looking at the right file and view these in order from one to four.

The first HTML report, the main health check script, gives you a good overview of observations •
and the general checks on the SQL. It covers observations and table and index summaries.
The observations should be carefully reviewed for any problems.

The second HTML report is more detailed and covers many miscellaneous areas, but most •
importantly it covers the current statistics (in the Current SQL Statistics section) and instance
and system parameters. It also covers cursor sharing information and execution plan
summaries. Historical information is also included, on tables, columns, indexes, instance, and
system parameters. This report also covers SQL Plan baselines and profiles, as well as the new
11g feature SQL_Patches.

Report three is useful if you think there is some issue with the execution plan or the execution •
plan has changed unexpectedly. Both current and historical execution plans are shown.

The fourth report will give you some timings and shows you where you should concentrate •
your tuning effort.

Other files include the following:

A zip file with the SQL Monitor execution details for each of the execution plans.•

A 10046 and 10053 trace file for debugging optimizer issues.•

A text file containing the results from the execution of the SQL. This is to check that we are •
running the right SQL and that the results are what is expected.

A zip file containing the log of the run and some ancillary SQL.•

Lastly, a SQLDX zip file that contains all of the discovered information in a CSV format. This •
will allow further post processing using spreadsheets.

There are many useful files here, but the most useful parts of this output are the four HTML files and the SQL
Monitor output. I’ll show some examples of these after running an example script. You can see that although we have
not run SQLT, we still have a lot of information to work with.

Running the SQLHC Script
Before I start the example, I have already logged in to Metalink (or My Oracle Support) and downloaded the one
zip file that constitutes the SQLHC script files. The file is called sqlhc.zip. It contains sqldx.sql, sqlhc.sql and
sqlhcxec.sql. This one simple zip file is all that is required to get the information listed in the example below. When
considering the endless HTML reports and historical information gathering and execution plans reports, why would
you not want to run this script as a check for each deployed SQL?

If you consider how much information you get from the SQL health check script and how little effort you have to
put in to get this information it’s a wonder that this script is free to supported customers. In the example below I will
log in as sys, run my q3.sql test script, and get the SQL ID. We’ll follow through all the required steps and show the
example output.

>sqlplus / as sysdba
SQL*Plus: Release 11.2.0.1.0 Production on Thu Dec 27 09:29:45 2012
Copyright (c) 1982, 2010, Oracle. All rights reserved.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

258

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL> @q3

COUNTRY_NAME SUM(AMOUNT_SOLD)
-- ----------------
Poland 8447.14
Denmark 1977764.79
Spain 2090863.44
France 3776270.13
Italy 4854505.28
United Kingdom 6393762.94
Germany 9210129.22

7 rows selected.

SQL> select sql_id, sql_text from v$sqlarea where sql_text like 'select%parallel%Poland%';

SQL_ID

SQL_TEXT
--
81s67vj4pjqm8

select /*+ parallel (s, 2) */
 country_name,
 sum(AMOUNT_SOLD)
from
 sh.sales s,
 sh.customers c,
 sh.countries co
where
 s.cust_id=c.cust_id
 and co.country_id= c.country_id
 and country_name in ('Ireland','Denmark','Poland',
 'United Kingdom',
 'Germany','France','Spain','The Netherlands','Italy')
 group by country_name order by sum(AMOUNT_SOLD);

Now we have the SQL ID of the SQL we want to investigate, we need only run the sqlhc.sql script. We will be
prompted for the license level of the database (I enter “T” in my case) and the SQL ID. That’s all there is to it. This is
much simpler than SQLT.

SQL> @sqlhc.sql
Parameter 1:
Oracle Pack License (Tuning, Diagnostics or None) [T|D|N] (required)

Enter value for 1: T
PL/SQL procedure successfully completed.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

259

Parameter 2:
SQL_ID of the SQL to be analyzed (required)
Enter value for 2: 81s67vj4pjqm8

Then the SQL script runs and produces an output file. The final page of the output looks like this

 adding: sql_shared_cursor_cur_81s67vj4pjqm8.sql (164 bytes security) (deflated 18%)
test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_9_log.zip OK

 zip warning: name not matched: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_09385

6_tkprof_from_tool_exec.txt
test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_9_log.zip OK

 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_5_sql_monitor.sql
(164 bytes security) (deflated 71%)

test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_9_log.zip OK

 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_9_log.zip (164 bytes security)
(stored 0%)

test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip OK

 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_16777216_3572724195_1_20121227_093856_5_sql_
monitor.html (164 bytes security) (deflate 86%)

 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_16777217_3572724195_1_20121227_093856_5_sql_
monitor.html (164 bytes security) (deflate 87%)

test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_5_sql_monitor.zip OK

 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_5_sql_monitor.zip
(164 bytes security) (stored 0%)

test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip OK

Ignore CP or COPY error below
'cp' is not recognized as an internal or external command,
operable program or batch file.
f:\app\stelios\diag\rdbms\snc1\snc1\trace\snc1_ora_4012_DBMS_SQLDIAG_10053_20121227_093815.trc
 1 file(s) copied.
 adding: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_6_10053_trace_from_cursor.trc
(164 bytes security) (deflated 82%)

test of sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip OK

SQLHC files have been created.

As usual we see messages regarding linux commands that do not run on my Windows system, but they do not
cause a problem. A directory listing of the local directory shows a zip file that is produced.

sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip

Now I put the zip file in a separate directory I created and unzip it.

>mkdir sqlhc
>copy sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip sqlhc\
 1 file(s) copied.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

260

>cd sqlhc
>unzip sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip
Archive: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856.zip
 inflating: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_1_health_check.html
 inflating: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_2_diagnostics.html
 inflating: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_3_execution_plans.html
 inflating: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_4_sql_detail.html
 extracting: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_9_log.zip
 extracting: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_5_sql_monitor.zip
 inflating: sqlhc_snc1_locutus_11.2.0.1.0_81s67vj4pjqm8_20121227_093856_6_10053_trace_from_cursor.trc

And that’s all there is in the running of the health check script. Now we need only look at each of the individual files.

The Main Health Check Report
The first HTML file contains the main report, which covers the observations, the SQL text (so we can make sure we are
looking at the right page), and the table and index summary information. Figure 14-1 shows the top part of page one.

Figure 14-1. The top of the first SQLHC HTML file

CHAPTER 14 ■ RUNNING A HEALTH CHECK

261

Each of the sections in the HTML report can be reached by use of the hyperlinks in the section shown above in
the figure. I’ll look at three of the four sections of this report in the following sections, omitting the SQL Text section,
which is self-explanatory.

The Observations Section

The most interesting one is the “Observations” section, which lists what it considers observations of interest. Usually
these are complaints about non-standard settings or architectural items that do not conform to best practices. Let’s
look at an example “Observations” section as shown in Figure 14-2.

Figure 14-2. The Observations section of the health check

The Observations section has many interesting suggestions for ways to improve your SQL. I have only shown the
left side of the screen. In Figure 14-3 I show the corresponding right side of the screen, which tells us what needs to
be done to remedy or investigate the observations. I have highlighted two observations in Figure 14-2, which could
be useful to investigate. The first one related to the value of the parameter optimizer_dynamic_sampling having a
non-default value of 4 (the default is 2). The second one is related to a height-balanced histogram that has no popular
values. Let’s look at the right hand side of the display (Figure 14-3) to see the column labeled “More” (changing to
“Details” in subsequent versions of SQLT).

CHAPTER 14 ■ RUNNING A HEALTH CHECK

262

The “More” column should really be called the “suggestion” column. For example, in the case of the non-default
optimizer_dynamic_sampling parameter the suggestion is “Review the correctness of this non-default value “4” for
SQL_ID 81s67vj4pjqm8.” This means that the value 4 was found, and it was “suggested” that we should think long
and hard before sticking to the current value of 4. The suggested value is 2. If this were a SQL going into production
there would have to be a discussion between DBAs and developers about why the value was set to 4 and whether 2
would be better.

In the case of the histogram for SH.SALES, the suggestion is “A Height-balanced histogram with no popular
values is not helpful nor desired. Consider dropping this histogram by collecting new CBO statistics while using
METHOD_OPT with SIZE 1.” This suggestion is saying that the histogram on this column is not useful and should be
dropped. It will only waste time. The statistics collection option is even suggested to you. Again, if this appeared in a
pre-production test there would have to be some discussion about this histogram and whether it was useful or not.

I’ve only mentioned two of the observations as examples. There are many suggestions (even for my simple SQL),
and there are many other observation possibilities that do not appear because I did not violate the rules that cause
them to appear. When you see the suggestions for your SQL you should carefully review them. Sometimes they are
important (for example, the two mentioned above would be considered important), and in such cases you should
either change your system (after careful testing) or have a good reason why those suggestions can be ignored. In most
cases, observations are not generated when you run SQLHC because you did not trigger the rule by doing (or not
doing) whatever it was that triggers the rule. This means that if you have a short list of observations you are doing well.
If you have a long list of observations you may be doing badly.

In the case of this example I would consider “Automatic gathering of CBO statistics is enabled.” as a relatively
unimportant observation (in this case), since I am aware I am gathering statistics in that way and I know that if
needed I will collect specific statistics to cover certain objects if needed. The warning is about small sample sizes in
some cases causing non-optimal plans. It is not always easy to distinguish important observations from unimportant
ones. How important an observation is will depend to some extent on your circumstances. Remember SQLHC is only
following rules, it doesn’t “know” your environment. You have to judge if an observation is important or not. With
practice and a good knowledge of your environment you can develop the skill to quickly separate the wheat from the

Figure 14-3. The right hand side of the observations section

CHAPTER 14 ■ RUNNING A HEALTH CHECK

263

chaff. Each of the four HTML reports list the SQL text, but there’s nothing to say about the SQL text, it’s just the text of
your SQL. If you’ve run the SQL many times with many different parameters or hints, it may be worth giving it a quick
glance to make sure you’re looking at the right report.

The Tables Summary Section

The “Tables Summary” section is the usual collection of information that you should be familiar with from a SQLT
XTRACT or XECUTE report. See Figure 14-4.

Figure 14-4. The “Tables Summary” section of the first page of the SQLHC report

In this report we see the tables involved in the query and the time of the statistics gathering. We also see some
information about the number of indexes and columns, but notice no hyperlinks are present to guide us quickly
through the report.

The Indexes Summary Section

The indexes are shown in Figure 14-5 and can be reached by clicking on “Indexes Summary” at the top of the page.
There are no sophisticated links from the Tables section like there are in SQLT reports. This is because the SQLHC
script is much simpler and cannot link in this way so easily.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

264

A similar page is made available for the indexes involved in the query. So the first HTML report from SQLHC is a
fairly simple collection of data on the SQL tables and indexes and any observations related to these. The next SQLHC
HTML report has more sections in it, including some historical information.

The Diagnostics Report
The second page of the SQLHC report can potentially show many pieces of information: for example, instance
parameters. Some sections may contain no information: for example, in my case there are no profiles in use. In fact, if
you go to that section in the report you will see the text

Available in 10g or higher. If this section is empty that means there are no profiles for this SQL.

(We covered profiles in more detail in Chapter 6.) Figure 14-6 shows the header part of the HTML report.

Figure 14-5. The index report from SQLHC

CHAPTER 14 ■ RUNNING A HEALTH CHECK

265

From the header you can link to all the sections mentioned through hyperlinks. There is much more detailed
statistical information in this report. For example, we have all the system parameters (not just the default ones)
along with the description of the parameter. This section should be scanned by the DBA to ensure that the
understanding of the system matches with what you see in this section. For example, I see that memory_target is set
to 780M (see Figure 14-7).

Figure 14-6. We see here the header section of page 2 of the SQLHC report

Figure 14-7. A snippet from the Instance Parameter section of the report

Is this what I expected? In my case, yes. This is to check your instance settings against what you are expecting for
the instance. Another example might be optimizer_mode is set to ALL_ROWS. Luckily I know this is the default, and
this is the value I expect. For every parameter on the system you should have a good understanding of why it is set that
way. In Figure 14-8 we see the non-default parameters. You should pay even more attention to these because SQLHC
is telling you that these are out of the ordinary.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

266

Figure 14-8. Part of the Non-default System Parameter section of the report

Figure 14-9. The descriptions of the intialization parameters

We see in the figure that the default values of parameters are highlighted and their current value, if manually set.
For example _optimizer_use_feedback is set to TRUE (which is the default value, but its value was set in the spfile).
If we look at this page (see Figure 14-10) we see the descriptions of the parameters.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

267

Finally we can look at the historical information that SQHC can provide. All the usual information is there: disk reads,
buffer gets, etc. Just as in SQLT we can use this information to relate the history to any change in the execution plan.

As you can see, the second report from the SQLHC report is useful because it shows the metrics related to the
statistics execution, as well as reports on non-default parameters and a historical view of the execution of your SQL. The
historical information in conjunction with the plan hash value (the unique identifier for a specific execution plan [PHV
for short]), and the system initialization parameters can be very useful in working out what is happening with your SQL.

The Execution Plan Report
The next report shows the execution plan for all the SQLs captured. See Figure 14-11, which shows the execution plan
for the latest execution.

Figure 14-10. The historical information from our example SQL. (Only the left hand side of the report is shown)

Figure 14-11. The left hand side of the report showing the execution plan of the last execution

CHAPTER 14 ■ RUNNING A HEALTH CHECK

268

I’ve shown only the left hand side of the report, but all the usual columns are present for the execution plan.
This execution plan shows a parallelized execution with a hash join between SALES and the hash join of COUNTRIES
and CUSTOMERS. As you would for an XTRACT report look at the steps and determine if they are appropriate, later
in this chapter we’ll also see a SQL monitor report that shows where time was spent during the execution. Look at
the expected rows, look at the cost of each line and see if they meet your expectations. Additionally you can see the
historical execution plans for the same SQL. Remember all this information is available from a system where you
have NOT installed SQLT.

The Monitor Reports
There are two types of monitor reports. The first one is the previously mentioned HTML file that provides a summary
of the activity of all the SQL being monitored. The second type of monitor report consists of the details of execution
plans. A zip file includes a separate report with the details for each execution plan.

The SQL Monitor Summary Report

The purpose of the first report is to put the SQL under investigation into some sort of context. After all, if you are
tuning an SQL statement, you want to make sure it’s having a significant effect on the system. In other words, there’s
no point in tuning an SQL statement so that it takes half the time (if it’s only run once), and it uses only 1 percent of
the system resources when there’s another statement that takes 50 percent of the system resources.

This summary view has three panes: “SQL Text”, “Top Activity”, and “Details”. You can expand and minimize these
sections by clicking the minimize icons on the right hand side of the pane. The “Detail” pane has four icons, which
cover “Activity”, “Statistics”, “Plan”, and “SQL Monitoring”.

Activity: This shows the active sessions in a graphic form and shows what the active sessions •
were doing. For example in Figure 14-12 we see the “Activity” button in the “Details” section,
which shows a spike in “direct path read” and “db file sequential read” near the end of the
sampling interval.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

269

Statistics: Shows the cursor details, including such details as number of executions, memory •
usage, cursor load times, number of versions of the cursor and database time used as well as
I/O requests and many other details as shown in Figure 14-13.

Figure 14-12. The Detail section activity chart

Figure 14-13. Showing an example statistics page from the Details section of the report

Plan: Shows the execution plan in graphic form. An example of this is shown in Figure • 14-14,
showing the plan in left to right style.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

270

Figure 14-14. Shows the plan section of the Detail tab

SQL Monitoring: Shows the duration, users, serial/parallel status, and other statistics related •
to the SQL ID. An example of this is shown in Figure 14-15.

Figure 14-15. The SQL Monitor tab on the Details page

CHAPTER 14 ■ RUNNING A HEALTH CHECK

271

This report shows that for the current SQL text, almost 100% of the database activity was that SQL. We see in the
bottom half of the report that my SQL took 10 seconds to run and that it ran in parallel. The result of this was that it
used almost 20 seconds of CPU time.

The SQL Monitor Detail Reports

The other SQL monitor reports show the details of the execution plan. All of the SQL monitor reports for this are
zipped up into one file, and each one represents one execution. Figure 14-16 shows the monitored SQL execution plan
for the SQL in detail.

Figure 14-16. One of the SQL Monitor reports in the Detail pane for the Plan Statistics button

CHAPTER 14 ■ RUNNING A HEALTH CHECK

272

We covered this kind of execution plan in Chapter 9. The Plan button of the Details pane shows a graphical
plan layout just like in Figure 14-14, shown earlier. The Parallel button shows some parallel specific information
(see Figure 14-17). This shows the I/O requests, buffer gets, and CPU time spent by each parallel set. For example, in
my SQL I see that Parallel server p000 used 0.8 seconds of database time while P001 used 0.9 seconds. If I hover my
mouse over the bar for those I get even more detail on this, broken down into CPU, I/O, and other. This kind of report
should allow you to investigate particular branches of your complex code quickly and easily.

Figure 14-17. Showing the Parallel button page on the Details pane. Parallel Set 1 has been expanded

The rest of the files inside the main zip file, produced by the sqlhc.sql script are text files. One is a 10053 trace
file of the SQL (covered in Chapter 5) and the other is the log of the sqlhc.sql script itself (which you can check for
errors) and the temporary scripts that were generated to produce the HTML files.

The sqldx.sql Script
Sqldx was written to collect detailed information about one SQL statement. It does not need SQLT and produces
many CSV formatted files (comma separated values) to take away from a further analysis. It also produces over 20
HTML formatted files.

In the example below I’ve used the same SQL, q3.sql, which I have used throughout this chapter. To generate a
report from sqldx.sql, we need only run the script on the system where the SQL has run. The SQL_ID in this case is
81s67vj4pjqm8. When we run sqldx.sql we get a prompt to confirm our license level. Select the appropriate license
level. In my case this is T.

SQL> @sqldx
Parameter 1:
Oracle Pack License (Tuning or Diagnostics) [T|D] (required)
Enter value for 1: T
PL/SQL procedure successfully completed.

Now I need to enter the format of the report. H stands for HTML and C stands for a CSV report and B stands for
both. I’m going to choose B in this case to create the maximum number of files. Generally speaking the HTML files are
the most useful. The CSVs are a nice to have. They contain information I have not used thus far.

Parameter 2:
Output Type (HTML or CSV or Both) [H|C|B] (required)
Enter value for 2: B
PL/SQL procedure successfully completed.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

273

Parameter 3:
SQL_ID of the SQL to be analyzed (required)
Enter value for 3: 81s67vj4pjqm8

Before the main execution starts we see the values passed as a confirmation that we are doing what we wanted.

Values passed:
~~~~~~~~~~~~~
License: "T"
Output : "B"
SQL_ID : "81s67vj4pjqm8"
 

The execution proceeds, it takes just a few minutes usually, but may take longer if there is more data in your 
database to analyze. After a couple of pages of output we see the final result.
 
SQLDX files have been created.
Archive:  sqldx_20130103_195515.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
    39708  01/03/2013 19:55   sqldx_20130103_195515_81s67vj4pjqm8_csv.zip
    67897  01/03/2013 19:55   sqldx_20130103_195515_81s67vj4pjqm8_html.zip
    15118  01/03/2013 19:55   sqldx_20130103_195515_13811832730830921192_force_csv.zip
    28024  01/03/2013 19:55   sqldx_20130103_195515_13811832730830921192_force_html.zip
    26717  01/03/2013 19:55   sqldx_20130103_195515_global_csv.zip
    21463  01/03/2013 19:55   sqldx_20130103_195515_global_html.zip
     6976  01/03/2013 19:55   sqldx_20130103_195515_81s67vj4pjqm8_log.zip
---------                     -------
   205903                     7 files
 

The zip file produced contains seven more zip files. Yes, that’s what I said: zip files within zip files. If you want to 
keep track of which file came from which, create a directory for each zip file and unpack the zip file into that directory. 
If that zip file contains other zip files then create a sub-directory to keep those and so on. 

Three CSV zip files (Normal, Force, and Global). These contain comma-separated files of the •
information gathered. They are in a form suitable to import into a spreadsheet. I don’t think 
this is as useful as the HTML format, but it may be useful for further analysis: for example, you 
could add up shared memory use or number of executions if you were investigating a complex 
parallel statement. See Figure 14-18 below, which shows an example spreadsheet created 
from sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN.csv. There are 20 other CSV 
files in total in here with various forms of information all in CSV format. (After the figure is a 
hierarchical listing of the files in the various zip, which I show to make the layout clear.)



CHAPTER 14 ■ RUNNING A HEALTH CHECK

274

Figure 14-18. A section of an import CSV result

Three HTML zip files (Normal, Force, and Global). These are the files we’ll look at to see what •
sqldx has collected.

A Log zip file•

Here’s a hierarchical listing of the files starting from the main zip file: sqldx_20130103_195515.zip.
sqldx_20130103_195515.zip contains:

The • CSV directory, which contains:
 
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_ACTIVE_SESS_HISTORY.csv
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQLSTAT.csv
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQLTEXT.csv
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQL_PLAN.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsACTIVE_SESSION_HISTORY.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLAREA.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLAREA_PLAN_HASH.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLSTATS.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLSTATS_PLAN_HASH.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLTEXT.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLTEXT_WITH_NEWLINES.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_MONITOR.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_OPTIMIZER_ENV.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN_MONITOR.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN_STATISTICS_ALL.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_REDIRECTION.csv



CHAPTER 14 ■ RUNNING A HEALTH CHECK

275

           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_SHARED_CURSOR.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_SHARED_MEMORY.csv
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_WORKAREA.csv
 

The • FCSV directory, which contains:
 
           sqldx_20130103_195515_13811832730830921192_force_DBA_HIST_ACTIVE_SESS_HISTORY.csv
           sqldx_20130103_195515_13811832730830921192_force_DBA_HIST_SQLSTAT.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsACTIVE_SESSION_HISTORY.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQL.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLAREA.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLAREA_PLAN_HASH.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLSTATS.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLSTATS_PLAN_HASH.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQL_MONITOR.csv
 

The • FHTML directory, which contains:
 
           sqldx_20130103_195515_13811832730830921192_force_csv.zip
           sqldx_20130103_195515_13811832730830921192_force_DBA_HIST_ACTIVE_SESS_HISTORY.csv
           sqldx_20130103_195515_13811832730830921192_force_DBA_HIST_SQLSTAT.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsACTIVE_SESSION_HISTORY.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQL.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLAREA.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLAREA_PLAN_HASH.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLSTATS.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQLSTATS_PLAN_HASH.csv
           sqldx_20130103_195515_13811832730830921192_force_GVsSQL_MONITOR.csv
 

The • GCSV directory, which contains:
 
           sqldx_20130103_195515_global_csv.zip
           sqldx_20130103_195515_global_DBA_HIST_SNAPSHOT.csv
           sqldx_20130103_195515_global_GVsPARAMETER2.csv
           GHTML directory which contains
           sqldx_20130103_195515_global_DBA_HIST_SNAPSHOT.html
           sqldx_20130103_195515_global_GVsPARAMETER2.html
           sqldx_20130103_195515_global_html.zip
 

The • HTML directory, which contains:
 
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_ACTIVE_SESS_HISTORY.html
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQLSTAT.html
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQLTEXT.html
           sqldx_20130103_195515_81s67vj4pjqm8_DBA_HIST_SQL_PLAN.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsACTIVE_SESSION_HISTORY.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLAREA.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLAREA_PLAN_HASH.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLSTATS.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLSTATS_PLAN_HASH.html



CHAPTER 14 ■ RUNNING A HEALTH CHECK

276

           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLTEXT.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQLTEXT_WITH_NEWLINES.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_MONITOR.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_OPTIMIZER_ENV.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN_MONITOR.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_PLAN_STATISTICS_ALL.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_REDIRECTION.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_SHARED_CURSOR.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_SHARED_MEMORY.html
           sqldx_20130103_195515_81s67vj4pjqm8_GVsSQL_WORKAREA.html
           sqldx_20130103_195515_81s67vj4pjqm8_html.zip
 

The • LOG directory, which contains:
 
           sqldx_20130103_195515_81s67vj4pjqm8_driver.sql
           sqldx_20130103_195515_81s67vj4pjqm8_log.zip
 

In total there are over 80 different files in HTML, CSV, and plain text format, too many to go into detail on each 
one. I’ll just mention the DBA_HIST_SNAPSHOT HTML file, which shows the history of the SQL in question, when it 
started, and which AWR snapshot it can be found in. In Figure 14-19, I show part of this page.

Figure 14-19. The HTML DBA_HIST_SNAPSHOT report from sqldx



CHAPTER 14 ■ RUNNING A HEALTH CHECK

277

The sqlhcxec.sql Script
By now of course you’re a SQLT pro and can probably take a good guess at what this routine does. This routine takes 
as parameter the license level and the name of a file containing the SQL you want to analyze. Remember this is all 
working without SQLT being installed on the database. The output files consist of two main files: a result file, showing 
the result of the query, and a zip file containing all the reports. 

The last few lines of this report’s output looks like this:
 
SQL> @sqlhcxec
Parameter 1:
Oracle Pack License (Tuning, Diagnostics or None) [T|D|N] (required)
Enter value for 1: T
PL/SQL procedure successfully completed.
Parameter 2:
SCRIPT name which contains SQL and its binds (required)
Enter value for 2: q3.sql
Values passed:
~~~~~~~~~~~~~
License: "T"
Script : "q3.sql"
In case of a disconnect review sqlhcxec_20130209_122156_error.log
SQL> PRO Ignore MOVE or MV error below
Ignore MOVE or MV error below
SQL> SET TERM OFF;
'mv' is not recognized as an internal or external command,
operable program or batch file.
SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE;
SQL>
SQL> BEGIN
 2 IF '^^sql_id.' IS NULL THEN
 3 RAISE_APPLICATION_ERROR(-20200, 'SQL_ID "^^sql_id." not found in memory.');
 4 END IF;
 5 END;
 6 /
PL/SQL procedure successfully completed.
SQL>
SQL> WHENEVER SQLERROR CONTINUE;
SQL> SET ECHO ON TIMI ON;
SQL>
SQL> /***
SQL> *
SQL> * begin_common: from begin_common to end_common sqlhc.sql and sqlhcxec.sql are identical
SQL> *
SQL> **/
SQL> SELECT 'BEGIN: '||TO_CHAR(SYSDATE, 'YYYY-MM-DD/HH24:MI:SS') FROM dual;

I’ve removed many lines for clarity, and the script finishes with these lines:

SQLHCXEC files have been created.
Archive: sqlhcxec_20130103_205245_81s67vj4pjqm8.zip

CHAPTER 14 ■ RUNNING A HEALTH CHECK

278

 Length Date Time Name
--------- ---------- ----- ----
 16784 01/03/2013 20:53 sqlhcxec_20130103_205245_81s67vj4pjqm8_1_health_check.html
 146959 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_2_diagnostics.html
 34947 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_3_execution_plans.html
 81269 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_4_sql_detail.html
 327092 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_6_10046_10053_trace_from_user_

script_exec.trc
 23968 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_9_log.zip
 15367 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_5_sql_monitor.zip
 247417 01/03/2013 20:54 sqlhcxec_20130103_205245_81s67vj4pjqm8_8_sqldx.zip
--------- -------
 893803 8 files

The zip file for sqlhcxec contains eight files:

A health check HTML file that is identical to the • sqlhc.sql output (mentioned above).

A diagnostics HTML file, which is also the same as the • sqlhc.sql output mentioned above as
the Diagnostics and profiles page.

An execution plan HTML file that shows the current execution plan and the historical •
execution plans (which sqlhc.sql did not). See Figure 14-20 below.

CHAPTER 14 ■ RUNNING A HEALTH CHECK

279

Figure 14-20. The sqlhcxec execution plans report, showing historical execution plans

A SQL detail HTML file just like the one produced by • sqlhc.sql.

SQL Monitor HTML files inside a zip file for each of the known historical executions of the SQL.•

A 10046 / 10053 HTML file for the execution of the SQL.•

A sqldx zip file, containing all of the same reports as the results of • sqldx.sql.

A zipped up log file.•

CHAPTER 14 ■ RUNNING A HEALTH CHECK

280

Summary
The SQL health check utility, although it not directly linked to SQLT and does not rely on it, has many of the same
elements in it as SQLT. It was created so that sites that do not want to or cannot install SQLT can get some benefit from
using sqlhc.sql and its associated scripts instead. SQLHC is not as interlinked as SQLT nor does it have as many
potential observations (SQLHC has about a hundred possible observations, while SQLT has 200 to 300 observations).
SQLHC is sufficiently useful that it should be considered a minimum requirement for SQLHC to be run against a new
production SQL to check against observations and expected execution plans. We are nearing the end of our journey
with SQLT, and so in the next chapter I’ll pull back and give you a bigger perspective on tuning.

281

CHAPTER 15

The Final Word

The key to successful tuning with SQLT is to use SQLT regularly and for real-life problems. If you’ve reached the final
chapter, you should now consider yourself a card-carrying member of the SQLT supporters club. You’ve learned a lot
about what SQLT can do, and along the way you’ve probably learned some things about the cost-based optimizer and
the Oracle engine. Let me remind you of some of the features we came across on our journey:

The effect of statistics on execution plans•

The effect of skewness on execution plans•

How the optimizer transforms SQL during parsing•

How profiles can help you temporarily freeze an execution plan•

How adaptive cursor sharing works•

How dynamic sampling works•

How cardinality feedback works•

How you can use SQLT with Data Guard•

How test cases can be built with SQLT to allow exploration of the execution plans•

How to use the brute force of XPLORE to look for unexpected effects on the CBO from •
upgrades and other changes.

How we can use the COMPARE method to investigate two SQLs•

Last but not least we talked about the health check script, which is a good second choice if •
SQLT is not available.

In this chapter I’ll try and give you a quick overview of a methodology I use to approach a tuning problem.
Naturally all methodologies have exceptions, but it’s better to have a default plan than having to determine a new one
for every occasion. I’ll also give my opinion as to why SQLT is the best tool available for tuning (apart from being free).
Then I’ll discuss some platform issues and assure you that SQLT and the examples we’ve covered do not just work on
one platform. Finally I’ll mention a few resources you should be aware of as you continue your greater journey into the
world of tuning.

Tuning Methodology
Tuning methodology is not this book’s main theme, but I feel I need to say something about it because SQLT can be a
central element to a good strategy. The lack of a central methodology to attack SQL tuning problems has always, in my
opinion, been the main problem for DBAs especially but also for developers who have to create efficient code. When

CHAPTER 15 ■ THE FINAL WORD

282

you have a tuning problem, where do you start? Usually it all depends on what kind of problem you have. To help you
here’s my five-step method.

1. Get an AWR report for the problem time. If there is a ”significant” problem in the “Top 5
waits” section of the report, deal with that first. If there is nothing obvious there then check
the “SQL Report” section of the AWR report. If there is an SQL using more resources than
other SQLs, then get an appropriate SQLT report. Always be led by the evidence presented
in the AWR report and not by your own hunches or guesswork.

2. If it’s an individual SQL problem, start with SQLT XTRACT or XEXCUTE (depending on
whether you can reliably run the SQL) and then use the information to go from there.
If you can’t use SQLT, then use SQLHC.

3. Evaluate the information collected and scrutinize any information that looks out of the
ordinary (this is where the constant practice helps, because you begin to recognize
out-of-the-ordinary behavior on your system).

4. Investigate any anomalies and make sure you understand them. They may be benign.
If the anomalies cannot be explained then try and assess if they could be the cause of your
problems.

5. If you do end up investigating an individual SQL that has changed performance,
remember there are many SQL tools that can be deployed to get more information.
Build a test case and use COMPARE or use XPLORE in desperation (if you have the time).

This high-level methodology has a few key elements. The first is to recognize things that are out of the ordinary.
To do this you must first understand what is normal, just like our alien visitor back in Chapter 2. The second element
is the knowledge of how things work in the optimizer. This takes practice and some reading (hopefully this book
helped).

It’s important to recognize that SQLT is not the first step in this methodology. Although SQLT is useful for many
tuning problems, the first step should be to assess the overall system performance, which can be best done from an
AWR report against the appropriate database. If the problem is related to the operating system, you may find your
solution there and need never look at a SQLT report or indeed any SQL. If your problem is with the database then
the AWR report is a good starting point for memory requirements, unexpected waits (seen in the top five events).
See Figure 15-1, which shows the section of the AWR report with the top five waits on the system. This report is not

very typical but at least shows no high percentages for unusual waits.
If your system is heavily loaded you should see waits in this section of the report that may require investigation.

Depending on what these waits are, you may be led to the SQL section of the report, which then may suggest an
investigation of a particular SQL or perhaps one or two. Then SQLT can be used to good effect (as long as the SQL
is not some internal Oracle code). See below in Figure 15-2 for the top SQL sorted by buffer gets.

Figure 15-1. The top 5 waits in AWR

CHAPTER 15 ■ THE FINAL WORD

283

In the atypical report above we see that one SQL is taking 28 percent of all the gets, that’s pretty unusual on a
production system, and you should probably investigate this (unless you know what it is and why it’s using that
much of the system). Sometimes if many SQL have regressed you can use SQLT to look at one SQL in detail: this is to
assess the problem afflicting that SQL in the hope that whatever has affected that SQL will be the same solution for
all the SQLs.

Why SQLT Is, Hands Down, the Best Tuning Utility
Now that we’ve put SQLT in its proper place in the strategy of tuning a system, we should acknowledge that for tuning
individual SQLs, SQLT is hands down the best starting tool for the job. It’s true that there are many tuning utilities
out there: some of them on the Oracle MOS site and some of them paid-for products. For example, TRCANLZR is
available as a stand-alone utility, TKPROF comes with Oracle as a utility, 10046 and 10053 tracing can be collected
from a standard Oracle installation. All of them, however, are focusing on one particular aspect or are going into great
detail on a problem without giving a bigger picture. SQLT is the main tool for focusing on one SQL and gives you the
big picture in an easily digestible form. SQLT does require you to do some work of course, and analysis of the reports
and building the overall picture of the SQL takes some time and some expertise. Sometimes you will need more
information than a particular run of SQLT has supplied (for example, the shared pool was flushed, or the system was
rebooted, so much information was lost). Depending on what you learn by looking at the SQL history and statistics,
you could look at the COMPARE method, for example (if you have a good run of the SQL). If you need to experiment
you can use the test case on a stand-alone system to try out a few things and if you know changes have come about
because of optimizer version changes, you can use XPLORE. SQLT is like a helpful assistant at a shopping mall:

“I think you need the statistics department today, sir. Try floor two, just two doors along.”

A Word About Platforms
A platform, in IT jargon, is the hardware and operating system on which other applications reside. In the case of the
Oracle product itself, it can be loaded onto many different platforms: Unix, Linux, OpenVMS, Solaris, Windows, and
others. As far as SQL commands are concerned, the platform makes very little difference. A “select” is still a “select.”
SQLT can be used on Unix (including Linux) and Windows. Other platforms will not allow the full functionality of
SQLT. SQLHC, the health check script will run on as many platforms as Oracle runs on, as it relies only on Oracle.

Figure 15-2. The SQL ordered by gets, part of the AWR report

CHAPTER 15 ■ THE FINAL WORD

284

In this book almost all my examples are based on a Windows platform, but on a day-to-day basis I use SQLT
on both Linux and Windows, and I have noticed no difference in behavior. I also regularly use SQLT on an Exadata
platform and again everything works as you would expect. Every example shown in the book for Windows can just as
easily work on Linux and vice versa. The interaction of SQLT with the operating system is usually only during the end
phases of reports where files are being collected and being zipped up. In these phases commands such as cp (copy
on Windows) and ls (DIR on windows) will generate messages indicating that those commands do not exist on the
current platform. This is not a serious error, and the alternative command will have been issued for the appropriate
platform.

Other Resources
This may be the final word in this book, but there are many other good resources available on SQLT. There are many
Metalink notes: I haven’t counted them but there are many more than the ones listed here. Luckily many of these
notes are linked to each other so these are good starting points:

215187.1 – The main SQLT note where you can download SQLT•

1454160.1 – FAQ about SQLT•

1465741.1 – How to create test cases using SQLT with test data.•

1455583.1 – Gives you access to a SQLHC video•

1366133.1 – SQL Health Check Script•

There are even webcasts (look at Note 740964.1), which leads to the Oracle Webcast Program. Select “Oracle
Database” and then browse the archived recordings. For SQLT here are some interesting topics for 2012:

“Resolve – Troubleshooting Performance Issues Using SQLT & SQLHealthCheck”•

“Understanding SQLTXPLAIN Main Report by Navigating Through Some Samples”•

“What is SQLTXPLAIN tool and how do I use it?”•

“How to create in 5 minutes a SQL Tuning Test Case using SQLTXPLAIN”•

Blogs on SQL and SQLT can be found at:

• www.carlos-sierra.net

• www.SteliosCharalambides.com

Summary
The SQLTXPLAIN utility, one of the most useful free utilities available to Oracle customers, has evolved over many
versions and many generations of the Oracle product. The latest version 11.4.5.6 (March 5, 2013) has come a long
way, and there are many new features. It is still evolving and no doubt will continue to evolve, but at least for 2013
there will be a pseudo-freeze so this is a good time to get up to speed. SQLT is a deceptively complex utility with many
features hidden away in innocuous-looking scripts. I hope I’ve cast some light on those features, so that maybe
you’ll be inspired to look at other scripts I have not mentioned. Get the latest SQLT version from the MOS site:
http://support.oracle.com.

I hope you’ve enjoyed the journey, and I sincerely hope you use SQLT to learn more about your system and the
SQL running on it. Remember, the key is to use SQLT regularly and investigate anything you don’t understand using
reliable sources; soon, you will be tuning with the best of them.

http://www.carlos-sierra.net/
http://www.stelioscharalambides.com/
http://support.oracle.com/

285

APPENDIX A

Installing SQLTXPLAIN

You may ask, why show the installation log for a utility that installs in five minutes and only has at most five
parameters as inputs. The plain fact of the matter is that despite the simplicity of the inputs and that most installs
can be quick and easy, there are situations where the installation can fail: either because the inputs were wrong
or because the installation steps were not done from suitably privileged accounts. You occasionally get questions
about an installation that may have worked, but the user is not clear. This is another reason to show what a “normal”
installation looks like. I also look at alternative ways in which SQLT can be installed, including a “silent” mode and
a remote install mode. There are also ways to change the setup of SQLT after it has installed, and I mention some of
the options available there. Finally I also mention how to de-install SQLT, in case you want to install a later version,
for example. By showing these options and describing the installation, I hope to convince you that the installation is
simple and robust and should be considered an asset to any system rather than a liability.

A Standard SQLT Installation
As an assistance to anyone installing SQLT I have supplied a partial install log of the SQLT utility. I have highlighted and
documented those areas of the installation that are of interest and note. New comers to SQLT may find this useful, but
regular users will find the section on other ways to install SQLT more interesting. In the example SQLT installation
below I have bolded my responses to make it clear where I am entering data, and I have removed blank lines for
brevity. In this example the SQLT zip file has been downloaded to a local directory and unzipped. Inside the zip file
we find the sqlt directory and the install directory (as we saw in Chapter 1). Now we connect as SYS into SQL*Plus and
start the main installation script sqcreate.sql

SQL> @sqcreate
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

11.2.0.1.0
no rows selected

So far the installation has initialized and discovered the environment it is installing itself into. The next steps
are to gather information so that the installation can be properly targeted. For most circumstances installing into the
local database is the easiest and simplest option. You only need a tablespace in which SQLT will store its information,
packages, functions, and the data repository. The size of this is generally very small (in my small installation this was
about 2 Mbytes). If you specify a remote connection here the data will be stored elsewhere, such as on a remote database.

APPENDIX A ■ INSTALLING SQLTXPLAIN

286

Specify optional Connect Identifier (as per Oracle Net)
Include "@" symbol, ie. @PROD
If not applicable, enter nothing and hit the "Enter" key.
This connect identifier is only used while exporting SQLT
repository everytime you execute one of the main methods.
Optional Connect Identifier (ie: @PROD):

The optional Connect Identifier is not often used, as you are normally installing SQLT locally. We cover the case
of a remote install later, in the section “A Remote SQLT Installation.” In this case, however, we just press Return.

PL/SQL procedure successfully completed.
Define SQLTXPLAIN password (hidden and case sensitive).
Password for user SQLTXPLAIN:oracle
Re-enter password:oracle
PL/SQL procedure successfully completed.

... please wait
TABLESPACE FREE_SPACE_MB
------------------------------ -------------
USERS 246
Specify PERMANENT tablespace to be used by SQLTXPLAIN.
Tablespace name is case sensitive.
Default tablespace [UNKNOWN]:USERS
PL/SQL procedure successfully completed.
... please wait
TABLESPACE

TEMP
Specify TEMPORARY tablespace to be used by SQLTXPLAIN.
Tablespace name is case sensitive.
Temporary tablespace [UNKNOWN]:TEMP
PL/SQL procedure successfully completed.

The next section is the part of the installation that most often causes confusion. The “main application user
of SQLT” is the schema name of the user that actually executes the SQL to be analyzed. This is not SQLTXPLAIN.
Throughout most of this book my example schema is called STELIOS, so I enter STELIOS here. If for some reason you
want to change this or add another schema you only need to grant the SQLT_USER_ROLE role to the user in question.
This would be done with grant SQLT_USER_ROLE to <username>;. Normally this username should be connectable
from the SQL*Plus prompt so that you can run the SQLT methods.

Note ■ In some systems SQL is executed via a remote connection from another system (for example through JDBC

connections), and the account used for these connections cannot be locally connected through SQL*Plus due to security

restrictions. In these cases the next best next option is to create a schema or use another schema that can execute the

SQL and that has access to the same data and objects as the target schema. Be wary in this case that you are not

creating a different environment that does not show your problem.

APPENDIX A ■ INSTALLING SQLTXPLAIN

287

The main application user of SQLT is the schema
owner that issued the SQL to be analyzed.
For example, on an EBS application you would
enter APPS.
You will not be asked to enter its password.
To add more SQLT users after this installation
is completed simply grant them the SQLT_USER_ROLE
role.
Main application user of SQLT:STELIOS
PL/SQL procedure successfully completed.
SQLT can make extensive use of licensed features
provided by the Oracle Diagnostic and the Oracle
Tuning Packs, including SQL Tuning Advisor (STA),
SQL Monitoring and Automatic Workload Repository
(AWR).
To enable or disable access to these features
from the SQLT tool enter one of the following
values when asked:

The following is another section of the installation where there is much confusion because quite often
the installer of SQLT is not aware of the license level for the database in question. There is no short cut to this,
unfortunately.

"T" if you have license for Diagnostic and Tuning
"D" if you have license only for Oracle Diagnostic
"N" if you do not have these two licenses
Oracle Pack license [T]:
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
TADOBJ completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

11.2.0.1.0
no rows selected

The main installation of SQLT starts here; and as it mentions in the prompts, there are some errors generated
during a fresh installation of SQLT. These are normal Oracle errors generated during attempts to drop objects in the
SQLT schemas that do not yet exist.

SQDOLD completed. Ignore errors from this script
SQCUSR completed. Some errors are expected.
Procedure created.

APPENDIX A ■ INSTALLING SQLTXPLAIN

288

No errors.
TAUTLTEST completed.
SQUTLTEST completed.
no rows selected
TACOBJ completed.

No more errors should be seen from the installation until we get to the section on privileges being revoked. These
errors are normal and should be ignored.

... creating package specs for SQLT$S
No errors.
... creating package specs for SQLT$T
No errors.
... creating views
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
Synonym created.
REVOKE SELECT, UPDATE ON sys.optstat_hist_control$ FROM SQLTXPLAIN
*
ERROR at line 1:
ORA-01927: cannot REVOKE privileges you did not grant
Grant succeeded.
Synonym created.
View created.
REVOKE SELECT ON sys.sqlt$_dba_tab_stats_vers_v FROM SQLTXPLAIN
*
ERROR at line 1:
ORA-01927: cannot REVOKE privileges you did not grant
Grant succeeded.
Synonym created.

There are several more error messages like this until we finally get to the end of the installation.

VALID PACKAGE BODY 11.4.5.0 TRCA$R
VALID PACKAGE BODY 11.4.5.0 TRCA$T
VALID PACKAGE BODY 11.4.5.0 TRCA$X
Deleting CBO statistics for SQLTXPLAIN objects ...
13:42:58 sqlt$a: -> delete_sqltxplain_stats
13:43:01 sqlt$a: <- delete_sqltxplain_stats
PL/SQL procedure successfully completed.
SQCPKG completed.
TAUTLTEST completed.
SQUTLTEST completed.
SQLT users must be granted SQLT_USER_ROLE before using this tool.
SQCREATE completed. Installation completed successfully.

APPENDIX A ■ INSTALLING SQLTXPLAIN

289

This last message SQCREATE completed is a good sign that all has gone well. Although the amount of work that
SQLT does for you during the installation may seem daunting, the installation itself usually takes no more than five
minutes. Even if you get something wrong during the installation it takes a very short time to correct the error by
simply removing SQLT and re-installing it with the correct settings or if you prefer you can change the setting after
the installation. For example if you get the license level wrong during installation you can correct it with one of the
following four routines:

disable_tuning_pack_access;

enable_tuning_pack_access;

disable_diagnostic_pack_access;

enable_diagnostic_pack_access;

I’ve given more details on the use of these routines in the section “How to Change the Licensing Level after a
SQLT Installation” below.

How to Change the Licensing Level after a SQLT Installation
The default settings for a SQLT installation work for most situations, yet sometimes you may want to change
them. For example, after installing SQLT you buy a diagnostic pack or tuning pack license. The tuning pack and
diagnostic pack can be bought separately or as a bundle from Oracle. If you have neither of these packs you should
use disable_tuning_pack_access and disable_diagnostic_pack_access if you installed with option “T” in
a normal installation. Here are the example steps

SQL> exec sqltxadmin.sqlt$a.disable_tuning_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqltxadmin.sqlt$a.disable_diagnostic_pack_access;
PL/SQL procedure successfully completed.

No parameters are needed for these routines, just execute these from the SQLT account on the databases where
SQLT is installed. You could change the license level by just re-installing SQLT, but this would not be a good idea if you
had many records in the SQLT repository that you wanted to keep. The list of configurable settings can be found under
the Global section of the main SQLTXECUTE or SQLTXTRACT report (as covered in Chapter 13). See Figure A-1.

APPENDIX A ■ INSTALLING SQLTXPLAIN

290

The license levels are more important and there are special routines for these. If we installed the product with
the wrong license level then we can change this with the sqltxadmin.sqlt$a packages, which has the previously
mentioned four procedures related to the licensing levels:

disable_tuning_pack_access;

enable_tuning_pack_access;

disable_diagnostic_pack_access;

enable_diagnostic_pack_access;

These four procedures disable and enable the tuning pack and diagnostic pack functionality in SQLT. The
arrow in Figure A-1 points to the prompt at the top of the SQLT main report that shows the example code. Below I’ve
disabled and enabled the tuning pack and then disabled and enabled the diagnostic pack to end up with the same
license level I started with.

SQL> SQL> exec sqltxadmin.sqlt$a.disable_tuning_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqltxadmin.sqlt$a.enable_tuning_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqltxadmin.sqlt$a.disable_diagnostic_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqltxadmin.sqlt$a.enable_diagnostic_pack_access;
PL/SQL procedure successfully completed.

Figure A-1. The top of a SQLTXECUTE report highlighting the configuration section

APPENDIX A ■ INSTALLING SQLTXPLAIN

291

Please note that in earlier versions of SQLT (before 11.4.4.6 and older) the routines to change the license level are
in the SQLTXPLAIN schema, and so the command to change the license level is

SQL> SQL> exec sqlt$a.disable_tuning_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqlt$a.enable_tuning_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqlt$a.disable_diagnostic_pack_access;
PL/SQL procedure successfully completed.
SQL> exec sqlt$a.enable_diagnostic_pack_access;
PL/SQL procedure successfully completed.

A Remote SQLT Installation
During the installation you will see the optional connect identifier prompt. Normally this is ignored as you are
installing locally. If, however, you want to install SQLT in remote mode you can specify a remote link. In these
examples the local system is where you are connected to SQL Plus and the remote system is where the SQLT
repository can be found.

Specify optional Connect Identifier (as per Oracle Net)
Include "@" symbol, ie. @PROD
If not applicable, enter nothing and hit the "Enter" key.
This connect identifier is only used while exporting SQLT
repository everytime you execute one of the main methods.
Optional Connect Identifier (ie: @PROD):@REMOTE

This appends @REMOTE to all SQL operations so that if you run @sqltxtract on the local database it will reach over
to the remote database to store SQLT information.

In a remote installation the sequence of steps to run a report are slightly different than running everything locally.

1. Install SQLT on the remote node from the local node.

2. Run the SQL on the remote node

3. Run the SQLTXTRACT or SQLTXECUTE report on the local node but that runs on the
remote node.

4. The reports are produced on the local node, but the repository data is stored on the
remote node.

Other Ways to Install SQLT
If you want to deploy SQLT to many systems (and who wouldn’t?) you might want to do a non-interactive installation.
In this case you can populate a number of variables and then run sqcsilent.sql. An example variable definition file
is provided in the installation directory of SQLT called sqdefparams.sql.

This is what it contains. These are all the values we’ve supplied in the interactive installation.

DEF connect_identifier = '';
DEF enter_tool_password = 'sqltxplain';
DEF re_enter_password = 'sqltxplain';
DEF default_tablespace = 'USERS';

APPENDIX A ■ INSTALLING SQLTXPLAIN

292

DEF temporary_tablespace = 'TEMP';
DEF main_application_schema = '';
DEF pack_license = 'T';

These variables should be changed to suit your environment: for example, the password should be changed, and
the tablespace and main application user could be different. When you have your own values in the file you can run
sqcsilent.sql, which will then execute in “silent” mode with no prompts for parameters.

SQL> @sqcsilent.sql

You can also run the installation with all the parameters on the line as in the example below

SQL> @sqcsilent2.sql '' sqltxplain USERS TEMP '' T

This will also execute a normal installation with no prompts for information. This could be a quick way to do a
standard install on a number of different systems.

How to Remove SQLT
If for some reason you wish to de-install SQLT (perhaps a new version has become available), you can use the routine
in the /install directory called sqdrop.sql. There are no parameters to this routine

SQL> @sqdrop
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

11.2.0.1.0
no rows selected
... uninstalling SQLT, please wait
TADOBJ completed.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

11.2.0.1.0
no rows selected
SQDOLD completed. Ignore errors from this script
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

APPENDIX A ■ INSTALLING SQLTXPLAIN

293

11.2.0.1.0
no rows selected
SQDOBJ completed. Ignore errors from this script
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
RDBMS_RELEASE

 11.2
RDBMS_VERSION

11.2.0.1.0
no rows selected
SQL>
SQL> DECLARE
 2 my_count INTEGER;
 3
 4 BEGIN
 5 SELECT COUNT(*)
 6 INTO my_count
 7 FROM sys.dba_users
 8 WHERE username = 'TRCADMIN';
 9
 10 IF my_count = 0 THEN
 11 BEGIN
 12 EXECUTE IMMEDIATE 'DROP PROCEDURE sys.sqlt$_trca$_dir_set';
 13 EXCEPTION
 14 WHEN OTHERS THEN
 15 DBMS_OUTPUT.PUT_LINE('Cannot drop procedure sys.sqlt$_trca$_dir_set. '||SQLERRM);
 16 END;
 17
 18 FOR i IN (SELECT directory_name
 19 FROM sys.dba_directories
WHERE directory_name IN (
'SQLT$UDUMP', 'SQLT$BDUMP', 'SQLT$STAGE', 'TRCA$INPUT1', 'TRCA$INPUT2', 'TRCA$STAGE'))
 21 LOOP
 22 BEGIN
 23 EXECUTE IMMEDIATE 'DROP DIRECTORY '||i.directory_name;
 24 DBMS_OUTPUT.PUT_LINE('Dropped directory '||i.directory_name||'.');
 25 EXCEPTION
 26 WHEN OTHERS THEN
 27 DBMS_OUTPUT.PUT_LINE('Cannot drop directory '||i.directory_name||'. '||SQLERRM);
 28 END;
 29 END LOOP;
 30 END IF;
 31 END;
 32 /
Dropped directory TRCA$INPUT2.
Dropped directory TRCA$INPUT1.
Dropped directory SQLT$BDUMP.
Dropped directory SQLT$UDUMP.
Dropped directory TRCA$STAGE.

APPENDIX A ■ INSTALLING SQLTXPLAIN

294

Dropped directory SQLT$STAGE.
PL/SQL procedure successfully completed.
SQL>
SQL> WHENEVER SQLERROR CONTINUE;
SQL>
SQL> PAU About to DROP users &&tool_repository_schema. and &&tool_administer_schema.. Press RETURN
to continue.

At this point you are prompted to confirm that you want to do a drop user SQLTXADMIN cascade; and a drop
user SQLTXPLAIN cascade;:

About to DROP users SQLTXPLAIN and SQLTXADMIN. Press RETURN to continue.
SQL>
SQL> DROP USER &&tool_administer_schema. CASCADE;
old 1: DROP USER &&tool_administer_schema. CASCADE
new 1: DROP USER SQLTXADMIN CASCADE
User dropped.
SQL> DROP USER &&tool_repository_schema. CASCADE;
old 1: DROP USER &&tool_repository_schema. CASCADE
new 1: DROP USER SQLTXPLAIN CASCADE
User dropped.
SQL> DROP ROLE &&role_name.;
old 1: DROP ROLE &&role_name.
new 1: DROP ROLE SQLT_USER_ROLE
Role dropped.
SQL>
SQL> SET ECHO OFF;
SQDUSR completed.
SQDROP completed.

And that’s it. Now the schemas are dropped along with all related objects.

295

APPENDIX B

The CBO Parameters (11.2.0.1)

SQLT has within it the entire list of parameters that affect your query performance. It uses this list for the
XPLORE method. Some parameters are hidden (only sporadically documented in various places) and some
are non-hidden (documented in Oracle’s online documentation: database reference manual
http://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams.htm#i102439). You can get this
list by issuing the following query from SQLTXPLAIN:

SQL> select name, description from sqlt$_v$parameter_cbo order by name;

The parameter list included in the “Full List of Parameters” section later in this chapter is from a database I used
previously, which happened to be 11.2.0.1. I could have put a different listing here from previous versions or later
versions, but this list is not meant to be exhaustive or definitive. It is here to act as a partial reference and to point
out that you can get the latest set from SQLT queries. This list is however a good starting point and many of these
parameters are still in use in 12c. You should not, however, consider this a list of parameters that you think might
improve your SQL: the default parameter settings are there for a reason: they give the best overall results. But if your
XPLORE report highlights some parameter that might make a difference, this list can give you a clue, along with the
description as to what is happening in your query. Remember that just knowing the name of the hidden parameter is
useful, as it gives you the chance to search My Oracle Support for even more clues.

Dealing with hidden parameters (they are hidden for a reason) can be a tricky business. The purpose of the list
in this appendix is to inform, not to give a template for experimentation. I’ll give some guidelines, caveats, and more
detailed descriptions of certain important hidden parameters, but the general rule is this: talk to support. The names
and effects of these parameters can change with any release. Oracle support will have the latest set of parameters and
their effects.

General Approach to Dealing with Hidden Parameters
In the general scheme of things, hidden parameters are needed only rarely or under special environments. For
example Exadata installations are recommended to use a small number of hidden parameters. Apart from these special
circumstances you will sometimes be requested to set some hidden parameters by Oracle support. Hidden parameters
when suggested by support will be attempts to confirm some bug that has affected performance (wrong execution
plan) or has resulted in wrong results or has even caused errors to be generated (ORA-00600’s or ORA-07445’s).
The setting of these parameters usually follows these steps:

1. A specific error occurs (wrong result, bad plan, ORA-00600, ORA-07445)

2. The characteristics of the wrong result, bad plan steps or trace file of the ORA-00600 or
trace file of the ORA-07445 suggest a course of action.

http://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams.htm#i102439

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

296

3. Often the suggested bug will have a workaround which consists of setting some parameter,
sometimes a hidden parameter, to either mitigate the problem (avoid the error), change
the execution plan back to the correct one or to ensure the retrieval of correct data.

4. If the suggested changes have the desired effect and the bug is confirmed, using this
technique and other techniques, you then have the options of setting the hidden
parameter or parameters at the system level or at the session level if possible, as a short
term workaround or tolerating the error while a bug fix is produced. This will depend on
many factors including your special circumstances and the effect of the parameters on
your system generally.

This is why I specify with all of these parameters that you should be working with Oracle support. Changing
hidden parameters without knowing the full implications can be disastrous (corrupted database springs to mind).
The following descriptions and list give you the understanding to allow you to work more knowledgeably with Oracle
support. If you have a database that is expendable, then you can do some experimentation with these parameters;
but they should never be applied to production, development, QA, or testing databases without checking with Oracle
support. I think that’s enough of a warning.

More Detailed Descriptions of Some Hidden Parameters
For general information I have listed below some of the hidden parameters that may be used to alleviate problems
under certain circumstances. None of this information should be used without the assistance of Oracle support. There
are sometimes unforeseen effects of setting these parameters. If Oracle support suggests some of these parameters
for exploratory investigation you will usually be asked to do this at the session level to determine the effect and also to
determine if you are being affected by a particular bug or to assess the efficacy of a bug fix. The defaults are as of 11.2,
and these may change in future versions of Oracle, or indeed may be removed completely.

_and_pruning_enabled
With composite partitioned tables you may be affected by some bugs which if they involve “AND” partition pruning
can be fixed by setting this parameter to FALSE. The default is TRUE.

_bloom_filters_enabled
Bloom filters are a memory efficient way of determining the membership of a set for a particular value. This can be
very effective with Oracle queries and large data sets. If your execution plan shows a bloom filter (BF) in the plan
and you get wrong results or ORA-00600’s, you may want to open a Service Request with Oracle support and discuss
setting this parameter to FALSE. The default is TRUE.

_complex_view_merging
Under some circumstances the process of merging complex views can cause problems. By default this parameter is set to
TRUE (as of 8i of Oracle) to allow the view query transformation to take place. If you have wrong results or ORA-00600s
you may want to consult with Oracle support to check if setting this to FALSE might help. The default is TRUE.

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

297

_disable_function_based_index
A function-based index contains a function (obviously). An example would be

sql> create index fbi_1 on t (upper(col1));

Here the function is upper. In some rare cases you may get wrong results, which can be temporarily fixed
(until you get a bug fix applied) by setting this value to the non-default value of FALSE.

_hash_join_enabled
There are a number of bugs that can be worked around by setting this hidden parameter to FALSE. The default
value is TRUE. Just because you see a hash join in a statement and your statement crashes doesn’t mean setting
this parameter to false is the solution. Open a service request and give support the information. There may be other
factors at work. Setting this value to FALSE will disable hash joins.

_optimizer_extended_cursor_sharing_rel
We already discussed disabling adaptive cursor sharing in chapter 7. Where we disabled ACS with

SQL> alter system set "_optimizer_extended_cursor_sharing_rel"=NONE scope=both;
SQL> alter system set "_optimizer_extended_cursor_sharing"=none scope=both;

Both parameters are needed to disable ACS. The default values are SIMPLE for _optimizer_extended_cursor_
sharing_rel and UDO for _optimizer_extended_cursor_sharing.

_optimizer_cartesian_enabled
Disable the Cartesian join if set to FALSE. This may be a useful way of debugging a failing statement, in conjunction
with Oracle supports help. The default value is TRUE.

_optimizer_cost_model
This changed the basis for costing of activity by the CBO. It can be set to cpu, io or choose. The name is a little
misleading, by setting cpu we do not optimize for reducing CPU usage, we optimize for reducing cost as before but are
now taking CPU into account for I/O operations. The value choose allows the optimizer to make a choice based on
statistics available in sys.aux_stats$. The default value is choose.

_optimizer_ignore_hints
This hidden parameter allows the optimizer to ignore embedded hints. The default value is FALSE. You might want to
try this if you felt the hints were not producing the best plan and wanted to disable these at the session level with

SQL> alter session set "_optimizer_ignore_hints"=TRUE;

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

298

_optimizer_max_permutations
If you feel somehow that the optimizer is not working hard enough, there is always the option to set
_optimizer_max_permutations to something other than the default value of 2,000. The parameter controls the
number of different permutations that the optimizer will try per query block when joining a number of tables.
There may be circumstances where this value can be as high as 80,000. The value is overridden by
_optimizer_search_limit, where _optimizer_search_limit is the number factorial of join permutations.

_optimizer_use_feedback
Controls the cardinality feedback feature as discussed in chapter 8. The default is TRUE. Set to FALSE to disable
this feature.

_optimizer_search_limit
The default value for this parameter is 5. This is the factorial number of maximum Cartesian joins that will be
considered. 5! (read as “five factorial”) is equivalent to 5x4x3x2x1 which equals 120.

Full List of Parameters
Why include a full list of parameters that we should not as DBAs change unless directed to by Oracle support?
There are two possible answers.

Oracle support may suggest some parameter for some investigation and it is useful to be able •
to have at least a brief description of what the parameter does. You should ask Oracle support
for this description before applying to any database anyway. This list is your backup for this
information.

Read and research each of these parameters carefully or try things out on a disposable •
database to give you insight in to how the optimizer works and what it is doing for us. This
greater understanding becomes a story that cements clear knowledge about some aspect of
the optimizer. An example of this is _optimizer_max_permutations. Before I came across the
parameter, I happily assumed that the optimizer tried all permutations of joins. A moment’s
thought would have disabused me of that opinion. But now I know there is a limit to the
number of join choices and how to control it.

The following list of CBO parameters (version 11.2.0.1) is a sample output of the SQLT query discussed at the
beginning of this appendix:

SQL> select name, description from sqlt$_v$parameter_cbo order by name;

NAME DESCRIPTION
--------------------------------------- ---
_add_stale_mv_to_dependency_list Add stale mv to dependency list
_aggregation_optimization_settings Settings for aggregation optimizations
_always_anti_join Always use this method for anti-join when possible
_always_semi_join Always use this method for semi-join when possible
_always_star_transformation Always favor use of star transformation
_and_pruning_enabled Allow partition pruning based on multiple mechanisms
_b_tree_bitmap_plans Enable the use of bitmap plans for tables w. only
 B-tree indexes

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

299

NAME DESCRIPTION
--------------------------------------- ---
_bloom_filter_enabled Enables or disables bloom filter
_bloom_folding_enabled Enable folding of bloom filter
_bloom_predicate_enabled Enables or disables bloom filter predicate pushdown
_bloom_predicate_pushdown_to_storage Enables or disables bloom filter predicate pushdown to
 storage
_bloom_pruning_enabled Enable partition pruning using bloom filtering
_bloom_pushing_max Bloom filter pushing size upper bound
_bloom_vector_elements Number of elements in a bloom filter vector
_bt_mmv_query_rewrite_enabled Allow rewrites with multiple MVs and base tables
_complex_view_merging Enable complex view merging
_connect_by_use_union_all Use union all for connect by
_convert_set_to_join Enables conversion of set operator to join
_cost_equality_semi_join Enables costing of equality semi-join
_cpu_to_io Divisor for converting CPU cost to I/O cost
_db_file_optimizer_read_count Multiblock read count for regular clients
_default_non_equality_sel_check Sanity check on default selectivity for like/
 range predicate
_deferred_constant_folding_mode Deferred constant folding mode
_dimension_skip_null Control dimension skip when null feature
_direct_path_insert_features Disable direct path insert features
_disable_datalayer_sampling Disable datalayer sampling
_disable_function_based_index Disable function-based index matching
_disable_parallel_conventional_load Disable parallel conventional loads
_distinct_view_unnesting Enables unnesting of in subquery into distinct view
_dm_max_shared_pool_pct Max percentage of the shared pool to use for a mining
 model
_dml_monitoring_enabled Enable modification monitoring
_eliminate_common_subexpr Enables elimination of common sub-expressions
_enable_dml_lock_escalation Enable dml lock escalation against partitioned tables
 if TRUE
_enable_query_rewrite_on_remote_objs mv rewrite on remote table/view
_enable_row_shipping Use the row shipping optimization for wide table selects
_enable_type_dep_selectivity Enable type dependent selectivity estimates
_extended_pruning_enabled Do runtime pruning in iterator if set to TRUE
_fast_full_scan_enabled Enable/disable index fast full scan
_fic_area_size Size of Frequent Itemset Counting work area
_first_k_rows_dynamic_proration Enable the use of dynamic proration of join
 Cardinalities
_force_datefold_trunc Force use of trunc for datefolding rewrite
_force_rewrite_enable Control new query rewrite features
_force_slave_mapping_intra_part_loads Force slave mapping for intra partition loads
_force_temptables_for_gsets Executes concatenation of rollups using temp tables
_force_tmp_segment_loads Force tmp segment loads
_full_pwise_join_enabled Enable full partition-wise join when TRUE
_gby_hash_aggregation_enabled Enable group-by and aggregation using hash scheme
_generalized_pruning_enabled Controls extensions to partition pruning for
 general predicates
_globalindex_pnum_filter_enabled Enables filter for global index with
 partition extended syntax
_gs_anti_semi_join_allowed Enable anti/semi join for the GS query

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

300

NAME DESCRIPTION
--------------------------------------- ---
_hash_join_enabled Enable/disable hash join
_hash_multiblock_io_count Number of blocks hash join will read/write at once
_improved_outerjoin_card Improved outer-join cardinality calculation
_improved_row_length_enabled Enable the improvements for computing the
 average row length
_index_join_enabled Enable the use of index joins
_kdt_buffering Control kdt buffering for conventional inserts
_left_nested_loops_random Enable random distribution method for left of
 nestedloops
_like_with_bind_as_equality Treat LIKE predicate with bind as an equality predicate
_local_communication_costing_enabled Enable local communication costing when TRUE
_local_communication_ratio Set the ratio between global and local communication
 (0..100)
_minimal_stats_aggregation Prohibit stats aggregation at compile/partition
 maintenance time
_mmv_query_rewrite_enabled Allow rewrites with multiple MVs and/or base tables
_mv_generalized_oj_refresh_opt Enable/disable new algorithm for MJV with generalized
 outer joins
_nested_loop_fudge Nested loop fudge
_new_initial_join_orders Enable initial join orders based on new ordering
 heuristics
_new_sort_cost_estimate Enables the use of new cost estimate for sort
_nlj_batching_enabled Enable batching of the RHS IO in NLJ
_no_or_expansion OR expansion during optimization disabled
_oneside_colstat_for_equijoins Sanity check on default selectivity for like/
 range predicate
_optim_adjust_for_part_skews Adjust stats for skews across partitions
_optim_enhance_nnull_detection TRUE to enable index [fast] full scan more often
_optim_new_default_join_sel Improves the way default equijoin selectivity
 are computed
_optim_peek_user_binds Enable peeking of user binds
_optimizer_adaptive_cursor_sharing Optimizer adaptive cursor sharing
_optimizer_adjust_for_nulls Adjust selectivity for null values
_optimizer_aw_join_push_enabled Enables AW Join Push optimization
_optimizer_aw_stats_enabled Enables statistcs on AW olap_table table function
_optimizer_better_inlist_costing Enable improved costing of index access using in-list(s)
_optimizer_block_size Standard block size used by optimizer
_optimizer_cache_stats Cost with cache statistics
_optimizer_cartesian_enabled Optimizer cartesian join enabled
_optimizer_cbqt_factor Cost factor for cost-based query transformation
_optimizer_cbqt_no_size_restriction Disable cost based transformation query size restriction
_optimizer_coalesce_subqueries Consider coalescing of subqueries optimization
_optimizer_complex_pred_selectivity Enable selectivity estimation for built-in functions
_optimizer_compute_index_stats Force index stats collection on index creation/rebuild
_optimizer_connect_by_cb_whr_only Use cost-based transformation for whr clause
 in connect by
_optimizer_connect_by_combine_sw Combine no filtering connect by and start with
_optimizer_connect_by_cost_based Use cost-based transformation for connect by
_optimizer_connect_by_elim_dups Allow connect by to eliminate duplicates from input
_optimizer_correct_sq_selectivity Force correct computation of subquery selectivity

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

301

NAME DESCRIPTION
--------------------------------------- ---
_optimizer_cost_based_transformation Enables cost-based query transformation
_optimizer_cost_filter_pred Enables costing of filter predicates in IO cost model
_optimizer_cost_hjsmj_multimatch Add cost of generating result set when #rows per key > 1
_optimizer_cost_model Optimizer cost model
_optimizer_degree Force the optimizer to use the same degree of
 parallelism
_optimizer_dim_subq_join_sel Use join selectivity in choosing star transformation
 dimensions
_optimizer_disable_strans_sanity_checks Disable star transformation sanity checks
_optimizer_distinct_agg_transform Transforms Distinct Aggregates to non-distinct
 aggregates
_optimizer_distinct_elimination Eliminates redundant SELECT DISTNCT's
_optimizer_distinct_placement Consider distinct placement optimization
_optimizer_eliminate_filtering_join Optimizer filtering join elimination enabled
_optimizer_enable_density_improvements Use improved density computation for selectivity
 estimation
_optimizer_enable_extended_stats Use extended statistics for selectivity estimation
_optimizer_enhanced_filter_push Push filters before trying cost-based query
 transformation
_optimizer_extend_jppd_view_types Join pred pushdown on group-by, distinct,
 semi-/anti-joined view
_optimizer_extended_cursor_sharing Optimizer extended cursor sharing
_optimizer_extended_cursor_sharing_rel Optimizer extended cursor sharing for relational
 operators
_optimizer_extended_stats_usage_control Controls the optimizer usage of extended stats
_optimizer_fast_access_pred_analysis Use fast algorithm to traverse predicates for
 physical optimizer
_optimizer_fast_pred_transitivity Use fast algorithm to generate transitive predicates
_optimizer_filter_pred_pullup Use cost-based flter predicate pull up transformation
_optimizer_fkr_index_cost_bias Optimizer index bias over FTS/IFFS under first K rows
 mode
_optimizer_free_transformation_heap Free transformation subheap after each transformation
_optimizer_group_by_placement Consider group-by placement optimization
_optimizer_ignore_hints Enables the embedded hints to be ignored
_optimizer_improve_selectivity Improve table and partial overlap join selectivity
 computation
_optimizer_instance_count Force the optimizer to use the specified number of
 instances
_optimizer_join_elimination_enabled Optimizer join elimination enabled
_optimizer_join_factorization Use join factorization transformation
_optimizer_join_order_control Controls the optimizer join order search algorithm
_optimizer_join_sel_sanity_check Enable/disable sanity check for multi-column
 join selectivity
_optimizer_max_permutations Optimizer maximum join permutations per query block
_optimizer_min_cache_blocks Set minimum cached blocks
_optimizer_mjc_enabled Enable merge join cartesian
_optimizer_mode_force Force setting of optimizer mode for user
 recursive SQL also
_optimizer_multi_level_push_pred Consider join-predicate pushdown that requires
 multi-level pushdown to base table

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

302

NAME DESCRIPTION
--------------------------------------- ---
_optimizer_native_full_outer_join Execute full outer join using native implementation
_optimizer_nested_rollup_for_gset Number of groups above which we use nested
 rollup exec for gset
_optimizer_new_join_card_computation Compute join cardinality using non-rounded in put values
_optimizer_null_aware_antijoin Null-aware antijoin parameter
_optimizer_or_expansion Control or expansion approach used
_optimizer_or_expansion_subheap Use subheap for optimizer or-expansion
_optimizer_order_by_elimination_enabled Eliminates order bys from views before query
 transformation
_optimizer_outer_to_anti_enabled Enable transformation of outer-join to anti-join
 if possible
_optimizer_percent_parallel Optimizer percent parallel
_optimizer_push_down_distinct Push down distinct from query block to table
_optimizer_push_pred_cost_based Use cost-based query transformation for push
 pred optimization
_optimizer_random_plan Optimizer seed value for random plans
_optimizer_reuse_cost_annotations Reuse cost annotations during cost-based
 query transformation
_optimizer_rownum_bind_default Default value to use for rownum bind
_optimizer_rownum_pred_based_fkr Enable the use of first K rows due to rownum predicate
_optimizer_search_limit Optimizer search limit
_optimizer_self_induced_cache_cost Account for self-induced caching
_optimizer_skip_scan_enabled Anable/disable index skip scan
_optimizer_skip_scan_guess Consider index skip scan for predicates with
 guessed selectivity
_optimizer_sortmerge_join_enabled Enable/disable sort-merge join method
_optimizer_sortmerge_join_inequality Enable/disable sort-merge join using inequality
 predicates
_optimizer_squ_bottomup Enables unnesting of subquery in a bottom-up manner
_optimizer_star_tran_in_with_clause Enable/disable star transformation in with
 clause queries
_optimizer_star_trans_min_cost Optimizer star transformation minimum cost
_optimizer_star_trans_min_ratio Optimizer star transformation minimum ratio
_optimizer_starplan_enabled Optimizer star plan enabled
_optimizer_system_stats_usage System statistics usage
_optimizer_table_expansion Consider table expansion transformation
_optimizer_transitivity_retain Retain equi-join pred upon transitive equality
 pred generation
_optimizer_try_st_before_jppd Try Star Transformation before Join Predicate Push Down
_optimizer_undo_changes Undo changes to query optimizer
_optimizer_undo_cost_change Optimizer undo cost change
_optimizer_unnest_all_subqueries Enables unnesting of every type of subquery
_optimizer_unnest_corr_set_subq Unnesting of correlated set subqueries (TRUE/FALSE)
_optimizer_unnest_disjunctive_subq Unnesting of disjunctive subqueries (TRUE/FALSE)
_optimizer_use_cbqt_star_transformation Use rewritten star transformation using cbqt framework
_optimizer_use_feedback Optimizer use feedback
_optimizer_use_subheap Enables physical optimizer subheap
_or_expand_nvl_predicate Enable OR expanded plan for NVL/DECODE predicate
_ordered_nested_loop Enable ordered nested loop costing

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

303

NAME DESCRIPTION
--------------------------------------- ---
_parallel_broadcast_enabled Enable broadcasting of small inputs to hash
 and sort merge joins
_parallel_cluster_cache_policy Policy used for parallel execution on cluster
 (ADAPTIVE/CACHED)
_parallel_scalability Parallel scalability criterion for parallel execution
_parallel_syspls_obey_force TRUE to obey force parallel query/dml/ddl
 under System PL/SQL
_parallel_time_unit Unit of work used to derive the degree of
 parallelism (in seconds)
_partial_pwise_join_enabled Enable partial partition-wise join when TRUE
_partition_view_enabled Enable/disable partitioned views
_pga_max_size Maximum size of the PGA memory for one process
_pivot_implementation_method Pivot implementation method
_pre_rewrite_push_pred Push predicates into views before rewrite
_pred_move_around Enables predicate move-around
_predicate_elimination_enabled Allow predicate elimination if set to TRUE
_project_view_columns Enable projecting out unreferenced columns of a view
_push_join_predicate Enable pushing join predicate inside a view
_push_join_union_view Enable pushing join predicate inside a union all view
_push_join_union_view2 Enable pushing join predicate inside a union view
_px_broadcast_fudge_factor Set the tq broadcasting fudge factor percentage
_px_minus_intersect Enables pq for minus/interect operators
_px_pwg_enabled Parallel partition wise group by enabled
_px_ual_serial_input Enables new pq for UNION operators
_query_cost_rewrite Perform the cost based rewrite with materialized views
_query_mmvrewrite_maxcmaps Query mmv rewrite maximum number of cmaps per
 dmap in query disjunct
_query_mmvrewrite_maxdmaps Query mmv rewrite maximum number of dmaps per
 query disjunct
_query_mmvrewrite_maxinlists Query mmv rewrite maximum number of in-lists
 per disjunct
_query_mmvrewrite_maxintervals Query mmv rewrite maximum number of intervals
 per disjunct
_query_mmvrewrite_maxmergedcmaps Query mmv rewrite maximum number of merged cmaps
_query_mmvrewrite_maxpreds Query mmv rewrite maximum number of
 predicates per disjunct
_query_mmvrewrite_maxqryinlistvals Query mmv rewrite maximum number of query in-list values
_query_mmvrewrite_maxregperm Query mmv rewrite maximum number of region permutations
_query_rewrite_1 Perform query rewrite before&after or only before
 view merging
_query_rewrite_2 Perform query rewrite before&after or only
 after view merging
_query_rewrite_drj mv rewrite and drop redundant joins
_query_rewrite_expression Rewrite with cannonical form for expressions
_query_rewrite_fpc mv rewrite fresh partition containment
_query_rewrite_fudge Cost based query rewrite with MVs fudge factor
_query_rewrite_jgmigrate mv rewrite with jg migration
_query_rewrite_maxdisjunct Query rewrite max disjuncts
_query_rewrite_or_error Allow query rewrite, if referenced tables are
 not dataless

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

304

NAME DESCRIPTION
--------------------------------------- ---
_query_rewrite_setopgrw_enable Perform general rewrite using set operator summaries
 summaries
_query_rewrite_vop_cleanup Prune frocol chain before rewrite after view-merging
_rdbms_internal_fplib_enabled Enable CELL FPLIB filtering within rdbms
_remove_aggr_subquery Enables removal of subsumed aggregated subquery
_replace_virtual_columns Replace expressions with virtual columns
_result_cache_auto_size_threshold Result cache auto max size allowed
_result_cache_auto_time_threshold Result cache auto time threshold
_right_outer_hash_enable Right Outer/Semi/Anti Hash Enabled
_row_shipping_explain Enable row shipping explain plan support
_row_shipping_threshold Row shipping column selection threshold
_rowsrc_trace_level Row source tree tracing level
_selfjoin_mv_duplicates Control rewrite self-join algorithm
_simple_view_merging Control simple view merging performed by the optimizer
_slave_mapping_enabled Enable slave mapping when TRUE
_smm_auto_cost_enabled If TRUE, use the AUTO size policy cost functions
_smm_auto_max_io_size Maximum IO size (in KB) used by sort/hash-join
 in auto mode
_smm_auto_min_io_size Minimum IO size (in KB) used by sort/ hash-join
 in auto mode
_smm_max_size Maximum work area size in auto mode (serial)
_smm_min_size Minimum work area size in auto mode
_smm_px_max_size Maximum work area size in auto mode (global)
_sort_elimination_cost_ratio Cost ratio for sort eimination under first_rows mode
_sort_multiblock_read_count Multi-block read count for sort
_spr_push_pred_refspr Push predicates through reference spreadsheet
_sql_compatibility sql compatability bit vector
_sql_model_unfold_forloops Specifies compile-time unfolding of sql model forloops
_subquery_pruning_enabled Enable the use of subquery predicates to perform pruning
_subquery_pruning_mv_enabled Enable the use of subquery predicates with MVs
 to perform pruning
_system_index_caching Optimizer percent system index caching
_table_scan_cost_plus_one Bump estimated full table scan and index ffs cost by one
_trace_virtual_columns Trace virtual columns exprs
_union_rewrite_for_gs Expand queries with GSets into UNIONs for rewrite
_unnest_subquery Enables unnesting of complex subqueries
_use_column_stats_for_function Enable the use of column statistics for DDP functions
_virtual_column_overload_allowed Overload virtual columns expression
_with_subquery WITH subquery transformation
active_instance_count Number of active instances in the cluster database
bitmap_merge_area_size Maximum memory allow for BITMAP MERGE
cell_offload_compaction Cell packet compaction strategy
cell_offload_plan_display Cell offload explain plan display
cell_offload_processing Enable SQL processing offload to cells
cpu_count Number of CPUs for this instance
cursor_sharing Cursor sharing mode
db_file_multiblock_read_count db block to be read each IO
dst_upgrade_insert_conv Enables/disables internal conversions during
 DST upgrade
hash_area_size Size of in-memory hash work area

APPENDIX B ■ THE CBO PARAMETERS (11.2.0.1)

305

NAME DESCRIPTION
--------------------------------------- ---
optimizer_capture_sql_plan_baselines Automatic capture of SQL plan baselines for
 repeatable statements
optimizer_dynamic_sampling Optimizer dynamic sampling
optimizer_features_enable Optimizer plan compatibility parameter
optimizer_index_caching Optimizer percent index caching
optimizer_index_cost_adj Optimizer index cost adjustment
optimizer_mode Optimizer mode
optimizer_secure_view_merging Optimizer secure view merging and predicate
 pushdown/movearound
optimizer_use_invisible_indexes Usage of invisible indexes (TRUE/FALSE)
optimizer_use_pending_statistics Control whether to use optimizer pending statistics
optimizer_use_sql_plan_baselines Use of SQL plan baselines for captured sql statements
parallel_degree_limit Limit placed on degree of parallelism
parallel_degree_policy Policy used to compute the degree of parallelism
 (MANUAL/LIMITED/AUTO)
parallel_force_local Force single instance execution
parallel_min_time_threshold Threshold above which a plan is a candidate
 for parallelization (in seconds)
parallel_threads_per_cpu Number of parallel execution threads per CPU
pga_aggregate_target Target size for the aggregate PGA memory
 consumed by the instance
query_rewrite_enabled Allow rewrite of queries using materialized
 views if enabled
query_rewrite_integrity Perform rewrite using materialized views with
 desired integrity
result_cache_mode Result cache operator usage mode
skip_unusable_indexes Skip unusable indexes if set to TRUE
sort_area_retained_size Size of in-memory sort work area retained
 between fetch calls
sort_area_size Size of in-memory sort work area
star_transformation_enabled Enable the use of star transformation
statistics_level Statistics level
workarea_size_policy Policy used to size SQL working areas (MANUAL/AUTO)

307

APPENDIX C

Tool Configuration Parameters

This appendix includes all the tool configuration parameters and their descriptions.

Parameter Description

automatic_workload_repository Access to the Automatic Workload Repository (AWR) requires a license for the
Oracle Diagnostic Pack. If you don’t have it you can set this parameter to N.

bde_chk_cbo On EBS applications SQLT automatically executes bde_chk_cbo.sql from
Note:174605.1.

c_cbo_stats_vers_days Days of CBO statistics versions to be collected. If set to 0 no statistics versions
are collected. If set to a value larger than actual stored days, then SQLT collects
the whole history. A value of 7 means collect the past 7 days of CBO statistics
versions for the schema objects related to given SQL. It includes tables,
indexes, partitions, columns, and histograms.

c_dba_hist_parameter Collects relevant entries out of DBA_HIST_PARAMETER. If automatic_
workload_repository and c_dba_hist_parameter are both set to Y then SQLT
collects relevant rows out of view DBA_HIST_PARAMETER.

c_gran_cols Collection Granularity for Columns. Default value of “SUBPARTITION” allows
SQLT to collect into its repository CBO statistics for columns at all levels: table,
partitions and subpartitions. All related to the one SQL being analyzed.

c_gran_hgrm Collection Granularity for Histograms. Default value of “SUBPARTITION”
allows SQLT to collect into its repository CBO statistics for histograms at all
levels: table, partitions and subpartitions. All related to the one SQL being
analyzed.

c_gran_segm Collection Granularity for Segments (Tables and Indexes). Default value of
“SUBPARTITION” allows SQLT to collect into its repository CBO statistics for
tables, indexes, partitions and subpartitions. All related to the one SQL being
analyzed.

collect_perf_stats Collects performance statistics on XECUTE method.

connect_identifier Optional Connect Identifier (as per Oracle Net). This is used during export
of SQLT repository. Include “@” symbol, i.e., @PROD. You can also set this
parameter to NULL.

(continued)

APPENDIX C ■ TOOL CONFIGURATION PARAMETERS

308

Parameter Description

count_star_threshold Limits the number or rows to count while doing a SELECT COUNT(*) in set of
tables accessed by SQL passed. If you want to disable this functionality set this
parameter to 0.

custom_sql_profile Controls if a script with a Custom SQL Profile is generated with every
execution of SQLT main methods.

distributed_queries SQLT can use DB links referenced by the SQL being analyzed. It connects
to those remote systems to get 10053 and 10046 traces for the SQL being
distributed.

domain_index_metadata This parameter controls if domain index metadata is included in main report
and metadata script. If you get an ORA-07445, and the alert.log shows the
error is caused by CTXSYS.CTX_REPORT.CREATE_INDEX_SCRIPT, then you
want to set this parameter to N.

event_10046_level SQLT XECUTE turns event 10046 level 12 on by default. You can set a different
level or turn this event 10046 off using this parameter. It only affects the
execution of the script passed to SQLT XECUTE. Level 0 means no trace, level 1
is standard SQL Trace, level 4 includes bind variable values, level 8 includes
waits and level 12 both binds and waits.

event_10053_level SQLT XECUTE, XTRACT and XPLAIN turn event 10053 level 1 on by default.
You can turn this event 10053 off using this parameter. It only affects the SQL
passed to SQLT. Level 0 means no trace, level 1 traces the CBO.

event_10507_level SQLT XECUTE uses this event on 11g to trace Cardinality Feedback CFB.
You can turn this event 10507 off using this parameter. It only affects the SQL
passed to SQLT. Level 0 means no trace, for meaning of other levels see MOS
Doc ID 740052.1.

event_others This parameter controls the use of events 10241, 10032, 10033, 10104, 10730,
46049, but only if 10046 is turned on (any level but 0). It only affects the
execution of the script passed to SQLT XECUTE.

export_repository Methods XTRACT, XECUTE and XPLAIN automatically perform an export of
corresponding entries in the SQLT repository. This parameter controls this
automatic repository export.

export_utility SQLT repository can be exported automatically using one of two available
utilities: traditional export “exp” or data pump “expdp”. With this parameter
you can specify which of the two should be used by SQLT.

generate_10053_xtract Generation of 10053 using DBMS_SQLDIAG.DUMP_TRACE on XTRACT can
be eliminated as a workaround to a disconnect ORA-07445 on SYS.DBMS_
SQLTUNE_INTERNAL. SQLT detects an ORA-07445 and disables the call to
DBMS_SQLDIAG.DUMP_TRACE (and SYS.DBMS_SQLTUNE_INTERNAL) in
next execution. If this parameter has a value of E or N, then you may have a
low-impact bug in your system.

healthcheck_blevel Compute index/partition/subpartition blevel and check if they change more
than 10 percent from one statistics gathering to the next.

healthcheck_endpoints Compute histogram endpoints count and check if they change more than
10 percent from one statistics gathering to the next.

(continued)

APPENDIX C ■ TOOL CONFIGURATION PARAMETERS

309

Parameter Description

healthcheck_ndv Review if number of distinct values for columns changes more than 10 percent
from one statistics gathering to the next.

healthcheck_num_rows Review table/partition/subpartition number of rows and check if they change
more than 10 percent from one statistics gathering to the next.

keep_trace_10046_open If you need to trace an execution of SQLT XECUTE, XTRACT or XPLAIN, this
parameter allows you to keep trace 10046 active even after a custom SCRIPT
completes. It is used by XECUTE, XTRACT, and XPLAIN. When set to its
default value of N, event 10046 is turned off right after the execution of the
custom SCRIPT or when 10053 is turned off.

mask_for_values Endpoint values for table columns are part of the CBO statistics. They include
column low/high values as well as histograms. If for privacy reasons these
endpoints must be removed from SQLT reports, you can set this parameter
to SECURE or COMPLETE. SECURE displays only the year for dates, and one
character for strings and numbers. COMPLETE blocks completely the display
of endpoints, and it also disables the automatic export of the SQLT repository.
The default is CLEAR, which shows the values of endpoints. If considering
changing to a non-default value, bear in mind that selectivity and cardinality
verification requires some knowledge of the values of these column endpoints.
Be also aware that 10053 traces also contain some low/high values that are not
affected by this parameter.

plan_stats Execution plans from GV$SQL_PLAN may contain statistics for the last
execution of a cursor and for all executions of it (if parameter statistics_
level was set to ALL when the cursor was hard-parsed). This parameter
controls the display of the statistics of both (last execution as well as all
executions).

predicates_in_plan Predicates in plan can be eliminated as a workaround to bug 6356566. SQLT
detects an ORA-07445 and disables predicates in next execution. If this
parameter has a value of E or N, then you may have bug 6356566 in your
system. You may want to apply a fix for bug 6356566, then reset this parameter
to its default value.

r_gran_cols Report Granularity for Columns. Default value of “PARTITION” reports table
partition columns. All related to the one SQL being analyzed.

r_gran_hgrm Report Granularity for Table Histograms. Default value of “PARTITION”
reports table and partition histograms. All related to the one SQL being
analyzed.

r_gran_segm Report Granularity for Segments (Tables and Indexes). Default value of
“PARTITION” reports tables, indexes, and partitions. All related to the one SQL
being analyzed.

r_gran_vers Report CBO Statistics Version Granularity for Tables. Default value of
“COLUMN” reports statistics versions for segments and their columns. All
related to the one SQL being analyzed.

r_rows_table_l Restricts number of elements for large HTML tables or lists.

r_rows_table_m Restricts number of elements for medium HTML tables or lists.

(continued)

APPENDIX C ■ TOOL CONFIGURATION PARAMETERS

310

Parameter Description

r_rows_table_s Restricts number of elements for small HTML tables or lists.

r_rows_table_xs Restricts number of elements for extra-small HTML tables or lists.

refresh_directories Controls if SQLT and TRCA directories for UDUMP/BDUMP should be
reviewed and refreshed every time SQLT is executed.

search_sql_by_sqltext XPLAIN method uses the SQL text to search in memory and AWR for known
executions of SQL being analyzed. If prior executions of this SQL text are
found, corresponding plans are extracted and reported.

skip_metadata_for_object This case-sensitive parameter allows you to specify an object name to be
skipped from metadata extraction. It is used in cases where DBMS_METADATA
errors with ORA-7445. You can specify a full or a partial object name to be
skipped (examples: “CUSTOMERS” or “CUSTOMER%” or “CUST%” or “%”). To
find the object name where metadata errored out you can use: SELECT * FROM
sqlt$_log WHERE statement_id = 99999 ORDER BY line_id; You have to
replace 99999 with the correct statement_id. To actually fix an error behind
ORA-7445, you can use alert.log and the trace referenced by it.

sqlt_max_file_size_mb Maximum size of individual SQLT files in megabytes.

sql_monitoring Be aware that using SQL Monitoring (V$SQL_MONITOR and V$SQL_PLAN_
MONITOR) requires a license for the Oracle Tuning Pack. If you don’t have it
you can set this parameter to N.

sql_tuning_advisor Be aware that using SQL Tuning Advisor (STA) DBMS_SQLTUNE requires
a license for the Oracle Tuning Pack. If you don’t have it you can set this
parameter to N.

sql_tuning_set Generates a SQL Tuning Set for each plan when using XTRACT.

sta_time_limit_secs STA time limit in seconds. See sql_tuning_advisor. Be aware that using
SQL Tuning Advisor (STA) DBMS_SQLTUNE requires a license for the Oracle
Tuning Pack.

tcb_time_limit_secs TCB (test case builder) time limit in seconds. See test_case_builder.

test_case_builder 11g offers the capability to build a test case for a SQL. TCB is implemented
using the API DBMS_SQLDIAG.EXPORT_SQL_TESTCASE. SQLT invokes
this API whenever possible. When TCB is invoked by SQLT, the parameter
exportData gets passed a value of FALSE, thus no application data is exported
into the test case created by TCB.

trace_analyzer SQLT XECUTE invokes Trace Analyzer - TRCA (Note:224270.1). TRCA analyzes
the 10046_10053 trace created by SQLT. It also splits the trace into two stand-
alone files 10046 and 10053.

upload_trace_size_mb SQLT uploads to its repository traces generated by events 10046 and 10053. This
parameter controls the maximum amount of megabytes to upload per trace.

validate_user Validates that user of main methods has been granted the SQLT_USER_ROLE
or DBA roles; or that user is SQLTXPLAIN or SYS.

xecute_script_output SQLT XECUTE generates a spool file with the output of the SQL being analyzed
(passed within input script). This file can be kept in the local directory, or
included in the zip file, or simply removed.

311

Index

n A, B
Adaptive cursor sharing, 111

bind aware cursors (see bind sensitive)
bind peeking, 113
bind sensitive, 114

acs_query.sql, 115
bind variable, 118
DIMENSION, plan, 121
examine with SQLTXTRACT, 118
execution plan, 119
IS_BIND_AWARE, 123
IS_BIND_SENSITIVE, 123
observations, 118
peeked and captured binds, 120
plan summary and estimation, 119
script output, 115
section on ACS, 122
setting up cursors, 114

bind variables, 112
CURSOR_SHARING parameter, 112–113
sharing section, 111
SQLTXTRACT section, 111
wrong performances, 124

n C
Cardinality feedback, 137

and dynamic sampling, 141
identical twins, 141

DDL, 146
execution plans, 142
good system, table statistics, 144
high value, cardinality, 143
metadata, 145
small value, cardinality, 143
SQLTXECUTE report, 145
table objects, 146
table statistics, bad system, 144

usage description, 139
execution plans, 140
need for usage, 141
observations, 140

working of, 137
dbms_xplan.display_cursor, 138
enabling feedback, 138
estimation, 138
test table, 137

CBO parameters, 295, 298
Coniguration parameters, 307–310
Cost-based optimizer (CBO), 8, 17

changes history, hash value, 28–29
column statistics, 29

example, 30
histogram information, 30

estimates, 31
as clues, 32
Exec Ord, 32
execution plan, 31
over and under, sections, 32
SQLT XECUTE, 32
stale statistics, 33

hints, 24
data manipulation language

(DML), 25
MERGE JOIN CARTESIAN, 24
operation, 27
SQLT report, 26
use_nl, 28

mysterious changes, 33, 36
CBO section, 36
creation times, 35
execution plan, 33, 35
hash join, 34
object information, 35
optimizer_index_cost_adj, 36
PRODUCTION_PROD_STATUS_BIX, 35

mysterious changesSQL text, 34

 ■ INDEX

312

out of range, 31
parameters, 22

_b_tree_bitmap_plans, 23
environment, 22
non standard settings, 23
optimizer_dynamic_sampling, 22

Siebel environment, 23
CRM environment, 24
tuning, 24

system statistics, 17
basis and synthesized values, 20
CBO section, 18
DBMS_STATS.IMPORTS_SYSTEM_STATS, 21
GATHER_SYSTEM_STATS, 21
HTML report, 18
info section, 19–20
interval parameter, 21
MREADTIM, 21
SQLT report, 18
SREADTIM, 20
SYSTEM_STATICS, 21
workload, 21

n D
Data Guard

physical standby database, 147
archive logs, 147
disaster recovering technology, 147
disaster zone, 147
online transaction processing (OLTP), 148

roxtract tool, 155
low chart, 161
HTML ROXTRACT, 159
left hand side, plan statistics, 160
output, 158
reports, output, 159
representation, low chart, 161
right hand side of execution, 161
schema, 157
usage of, 157
zip ile directory, 158

SQLTXTRSBY, 148
database link, 151
environment section, 155
error message, 148
execution plan, 154
read-only database, 150
SQL on standby, 150
SQLT repository, 148
SQLTXTRACT limitations, 148
TO_STANDBY, 154
trace collection, 149
view of XTRSBY, 152

work on datagaurd, 150
XTRACT, 149
XTRSBY report, 153
XTRSBY using, 150
zip ile, 152

Dynamic sampling, 129
controlling, 131

dump ile, 133
operations, 132
parameter, 132
query text, 134
sampling for string, 133
session level, 131
system level, 131
user_dump_dest location, 133

deine, 131
execution plans, 130
optimizer processes, 131
optimizer_dynamic_sampling, 134

CBO environment, 135
non default value set, 136

and parallel statements, 136
SQLTXPLAIN report, 130
value to be set, 136

n E
Execution plans

comparison of
bufer, 175
cardinality, 176
collecting main method repository, 166
CPU time, 175
database creation, 169
data import, repository, 168
direct writes, 176
disk reads, 176
elapsed time, 175
environment section, 173
fetches, 176
irst database, 164
GV$SQLAREA_PLAN_HASH, 176
HTML compare report, 173
ID checking, 166
import, SQLTCOMPARE, 167
invalidations, 176
load time, 176
optimizer environment, 176
plan from diferent systems, 174
plan selection, 169
prepare, main method repository, 166
processed rows, 176
readme ile, 167
read, SQLTCOMPARE report, 171
report, 171

Cost-based optimizer (CBO) (cont.)

■ INDEX

313

second system, 165
SQL ID, 172
SQL plans, 164
SQLTCOMPARE, running, 169
SQLTXPLAIN schema, 168
src or source, 176
summary, plan, 175
target databases, 164
time stamp, 176
total execution, 176
user I/O, 175
version count, 176

SQLTCOMPARE, 163
SQLT repository, 163

n F, G
Forcing execution plans

identify SQL proile, 105
HTML report, 107
manual run and plan, 105
plan info column, 108
SQLT XECUTE, 106

proile transfer from one DB
to another, 108

staging, 109
steps, 108
workload, 108

SQL proile, 93
proiling, 94
query block names, 95
SQL statement tuning, 95
suboptimal behavior, 93
super hints, 93

SQLT-SQL proile, 95
execution plans, 96
ID for proile, 96
plan hash values (PHV), 96
script, 98
sqltproile.sql, 98
SQLT XTRACT method, 95
utl directory, 96

working with SQL proile, 99, 102
emergency options, 105
EXEC script, 102
force_match lag, 102
LOB, 102
parameters, 102
scripting, 99–102
solution, 102–105
START script, 102
text signature, 102
write append (wa) procedure, 102
wrong execution plan, 99

n H, I, J, K, L, M, N
Hidden parameters, 295

_and_pruning_enabled, 296
_bloom_ilters_enabled, 296
_complex_view_merging, 296
_disable_function_based_index, 297
_hash_join_enabled, 297
_optimizer_cartesian_enabled, 297
_optimizer_cost_model, 297
_optimizer_extended_cursor_sharing_rel, 297
_optimizer_ignore_hints, 297
_optimizer_max_permutations, 298
_optimizer_search_limit, 298
_optimizer_use_feedback, 298

n O, P
Object statistics

components, 40
deine, 40
gathering, 45

AWR, 45
SQL, from OEM, 46
SQLT report, 45
SQL tuning advisor, 45
SQLT XTRACT, 46

midnight truncate, 47
cartesian joins, 47, 51
column expansion, 49
column statistics, rows, 49
Estim card column, 48
execution plan, 48
information modify, 50
insert, delete, and update table, 50
parameter settings, 48
SQLT XECUTE, 48
table statistics, 50

optimizer astray, 41
partitions, 41

collections and samples, 42
MAIN_TABLE_201202, 42

save, restore, and lock, 46
MYSTATS2, 47
table, volatile, 46
ZIP ile, 47

size sampling, 43
application, 45
AUTO_SAMPLE_SIZE, 44
column statistics, 45
DBMS_STATS, 44

stale statistics, 42
SQLT, 42
stale stats, 43

 ■ INDEX

314

statistics, 39
cost based optimizer (CBO), 40
operation classes, 40
poor quality, 39

table statistics, 41

n Q, R
Query transformations

10053 trace ile, 73
a section of, 74
contents, 74
DBMS_SQLDIAG, 75
fast full scan (FFS), 75
getting a ile, 73
optimizer, 74
performance of steps, 75
PL/SQL, 76
SQLTXPLAIN, 73
SQLT XTRACT, 75
traceile_identiier, 74

cost calculations, 90
access paths, 90
basic statistical information, 90
clustering factor, 91
join abandonment, 91
plans, 90

disable transformations, 82
cost based optimizer (CBO), 82
subquery unnesting inluences, 82
unnest_subquery, 83

execution plan, 71
hints, optimizer, 87

dumping, 89
errant behaviour, 89
execution plan, 87
hash join, 87
of 10053 trace ile, 89
SQL use_nl, 88

no_query_transformations, 72
optimizations, 72
optimizer parameters, 83

cursor_sharing, 85
FORCE, cursor_sharing, 86
optimizer_mode_hinted, 83
section of 10053 trace, 84
user_dump_area, 85

Oracle query optimizer, 71
SQL query, 71
SQLT, 73
sub query, 72
transformations, 77

and codes, 78
complex view merging (CVM), 78

inal query, 81
for SQL statements, 78
join predicate push down (JPPD), 78
new query, 81
original query, 81
signature text, 80
subquery unnesting, 78, 81
subquery unnesting (SU), 78
tracing a query, 79
user_dump_dest, 80

unnesting sub query, 71

n S
Skewness

afects execution plan, 59
bind variables, 63

captured binds, 65
Cusor_Sharing, 65
deine, 63
peek and capture, 64

bucket-object type, 56
deine, 53
histogram, 58

add and remove, 62
column statistics, 62
height balanced, 61
to use, 61
types, 60

hyperlink, 58
object types, 55
resource plan, 56
section, table, 57
skewed data, 55
SQLT report, 54
SQLXECUTE report, 57
table column statistics, 54
variable execution time, 66

column statistics, 68
diferent plans, 66
optimizer estimates, 67
worst plan, 67

sqldx.sql script
CSV directory, 274
CSV formatted iles, 272
FCSV directory, 275
FHTML directory, 275
inal result, 273
GCSV directory, 275
hierarchical lists, 274
HTML DBA_HIST_SNAPSHOT report, 276
HTML directory, 275
import CSV result, 274
license level, 272
LOG directory, 276

Object statistics (cont.)

 ■ INDEX

315

main execution, 273
report format, 272
zip ile, 273

sqlhc.sql script
detail report

Parallel button page, 272
plan statistics button, 271

diagnostics report
historical information, 267
HTML report, 264
information, 264
instance parameter section, 265
intialization parameters, 266
non-default system parameter section, 265–266

execution plan, 267
ile names, 256
main report

indexes summary section, 263
observations section, 261–263
SQLHC HTML ile, 260
table summary section, 263

monitor reports
detail view, 271–272
summary view, 268–271
types, 268

parameters, 256
produces, 257
script running, 257–259
summary view

detail section activity chart, 269–270
panes, 268
plan section, 269–270
SQL Monitor tab, 270–271
statistics page, 269

sqlhcxec.sql script
execution plans report, 279
reports output, 277
zip ile, 278

SQL health check (SQLHC) (see also sqlhc.sql script)
error checks, 256
reasons, 255
report, 255
script, 255
sqldx.sql script, 256

CSV directory, 274
FCSV directory, 275
CSV formatted iles, 272
FHTML directory, 275
inal result, 273
GCSV directory, 275
hierarchical lists, 274
HTML DBA_HIST_SNAPSHOT report, 276
HTML directory, 275
import CSV result, 274
license level, 272

LOG directory, 276
main execution, 273
report format, 272
zip ile, 273

sqlhcxec.sql script
execution plans report, 279
reports output, 277
zip ile, 278

SQLT, 1 (see also SQL health check (SQLHC))
DBA community, 2
join methods, 16

cartesian, 16
hash join, 16
nested loop, 16
sort merge, 16

modify (see TRCANLZR)
Oracle story, 1
report, 5

approach, 8
cardinal and selective, 9
CBO, 8
cost, 11
equality predicate selectivity, 11
execution plan, 9
expandings, 15
hovering, 13
hyperlinks, 14
indented operations, 12
indexes section, 6
links, 5
main section, 6
metadata hyperlink, 8
navigation, 5
operations lining, 13
options, table, 10
Oracle engine execution, 12
read, execution plan, 12
sources, execution plan, 15
statistics, index, 7
table column, 10
truncate, 11

starting with, 2
copy of, get, 3
install, 3
report, 4
SQLTXECUTE, 4
SQLTXRACT, 4
steps, 2
tuning, 3

to know, 2
SQLT tuning, 281

data gaurd, 281
methodology, 281

anamoly investigation, 282
AWR report, 282

 ■ INDEX

316

COMPARE, 282
information gathering, 282
ordered SQL, 283
scrutinizing information, 282
waits in AWR, 282
XECUTE, 282
XTRACT, 282

parsing, 281
skewness, 281
statistics, 281
utility for SQLT, 283

archived records, 284
blogs for, 284
metalinks, 284
platforms, 283
resources, 284

SQLTXPLAIN (see also Data Guard)
license level, 289

modifying command, 291
packs for, 289
SQLTXECUTE report, 290
tuning pack, 290

remote installation, 291
repository, 291
running a report, 291

removing SQLT, 292
SQLT installation, 285, 291

directory, 285
errors in, 288
license levels, 289
messages, errors, 288
methods, 286
remote connection, 285
sections of, 287

n T, U, V, W
Test case building

environmental needs, 177
execution plan, 192

add and remove hints, 194
debug, optimizer, 198
EXPLAIN PLAN, 193
extensive testing, 193
hint inclusion, 194
indexes, 196
object statistics, 198
optimizer parameters, 193
plan, 196
run test case, 198
set autotrace, 193
SQL structure, 195

system statistics set, 197
unchanged code, 196
version, optimizer, 195

processes in, 178
case execution, 189
CBO statistics, 180
data dictionary information, 185
data import, 184
directory creation, 181
dump ile, 179
environment, CBO, 180
environment of testing, 179
execution plan, 179–180
iles in cases, 179
ix_control parameters, 189
lushes, 179
histograms, 179
import scripts, 179
log ile, 187
metadata objects, 183
modes, 180
repository of SQLT, 180
running a report, 178
of scripts, 181
sel_aux.sql, 179
SQL investigation, 179
SQL statement, 180
sqlt_snnnnn_purge.sql, 183
SQLTXTRACT, 178
sub directory creation, 178
system statistics, 186
TC schema, 179
tracing, 179
user and object creation, 179
user creation, 181
utility installation, 184
validity testing, 182
working with, 181
XPRESS.sql, 181

production environment, 178
run setup, 177
SQLT report, 177
utilities, 198

code fragments, 204
data inclusion, 204
estimates, statistics, 200
pack_tcx.sql, 203
plan_table, 199
sel_aux, 199
sel.sql, 199
SH schema, 203
sqlt_s11996_tcx, 202
sqlt_snnnnn_del_hgrm.sql, 200

SQLT tuning (cont.)

 ■ INDEX

317

sqlt_snnnnn_tcx.zip, 202
sqltxecute.sql, 204
TC iles, 202

Trace Files (see TRCANLZR)
TRCANLZR

10046 trace, 232
bind sections, 238
decoding, 232
details, keyword, 235
iles, 245
gathering traces, 232, 237
generation of, 238
header, 233
keywords, 235
levels of, 238
main section, 234
oradebug command, 237
records decode, 235
sections, 233
SQL execution, 239
truncation, 234

analyze trace iles, 244
control.txt, 244
deine, 244
glossary, 247
header section, 246
information of iles, 231
optimizer, 231
reports, 231
response time, 248
SQLT modify, 249

coniguration of tool, 250
naming parameters, 252
parameter coniguration, 251–252

SQLTXTRACT, 231
trace analyzer ile, 245
TKCASPLIT, 241

sqltrasplit.sql, 242
statistics, 242
trace iles, 242

TKPROF, 240
output, 240
report, 231
statements of execution, 241

TRCASPLIT, 231
TRCAXTR, 249

for SQL’s, 249
XTRACT, 249

n X, Y, Z
XPLORE

session, 212
baseline report, 227
_cursor_plan_unparse_enabled, 216
DBA privileges, 212
evaluate results, 219
execution plan, 222–223
features in, 227
hyperlinks, 221, 223
lines of core, 216
PHV details, 221
PROMPT, 215
re run test case, 224
reports, 220
script building, 213
script execution, 217
SQL monitor, 228
SQL monitor report, 228
superscript, 219
superscript build, 213
table access, 226
test case, 212
test case evaluation, 224
test details, 223
test ID, 222
tuning methodology, 226
XTRACT report, 224
zip/unzip, 227

use of, 205
working of, 206

bug ixes, 207
cannot change, 207
changes, 206
characteristic test, 206
exadata parameters, 206
ix control, 207
framework script, 206
HTML report, 210
optimizer_features_enable, 208
report, SQL monitor, 211
script genderation, 206
settings, ix control, 208
SQL monitor report, 210
steps to, 206
super switch, 208
test case, 206
value re-query, 208

Oracle SQL Tuning
with Oracle SQLTXPLAIN

Stelios Charalambides

Oracle SQL Tuning with Oracle SQLTXPLAIN

Copyright © 2013 by Stelios Charalambides

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4809-5

ISBN-13 (electronic): 978-1-4302-4810-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Developmental Editor: Chris Nelson
Technical Reviewer: Mark Bobak
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Michael Sandlin
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

I dedicate this book to my beautiful family, who put up with my strange working hours and endless nights
strapped to a laptop. he journey is nearly at an end. As always, Lesley is my core. Without her I would

achieve nothing. hank you for helping me to achieve this.

vii

Contents

About the Author .. xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Foreword ... xxi

Introduction .. xxv

Chapter 1: Introduction to SQLTXPLAIN ■ ...1

What Is SQLT? ..1

What’s the Story of SQLT? ... 1

Why Haven’t You Heard of SQLT? ... 2

How Did I Learn About SQLT? .. 2

Getting Started with SQLT ...2

How Do You Get a Copy of SQLT? ... 3

How Do You Install SQLT? .. 3

Running Your First SQLT Report ... 4

When to Use SQLTXTRACT and When to Use SQLTXECUTE .. 4

Your First SQLT Report ...5

Some Simple Navigation ... 5

How to Approach a SQLT Report .. 8

Cardinality and Selectivity ... 9

What Is Cost? ... 11

Reading the Execution Plan Section .. 12

Join Methods ...16

Summary ...16

■ CONTENTS

viii

Chapter 2: The Cost-Based Optimizer Environment ■ ..17

System Statistics ...17

Cost-Based Optimizer Parameters ..22

Siebel Environment Considerations ..23

Hints ..24

History of Changes ..28

Column Statistics ..29

Out-of-Range Values ...31

Over Estimates and Under Estimates ..31

The Case of the Mysterious Change ..33

Summary ...37

Chapter 3: How Object Statistics Can Make Your Execution Plan Wrong ■ 39

What Are Statistics? ..39

Object Statistics ..40

Partitions ...41

Stale Statistics ..42

Sampling Size ...43

How to Gather Statistics ..45

Saving and Restoring and Locking Statistics ..46

The Case of the Midnight Truncate ..47

Summary ...51

Chapter 4: How Skewness Can Make Your Execution Times Variable ■ 53

Skewness ..53

What Is Skewness? ... 53

How to Tell If Data Is Skewed .. 55

How Skewness Affects the Execution Plan ... 59

■ CONTENTS

ix

Histograms ..60

Histogram Types .. 60

When to Use Histograms ... 61

How to Add and Remove Histograms .. 62

Bind Variables ..63

What Are Bind Variables?... 63

What Are Bind Peeking and Bind Capture? .. 64

Cursor_Sharing and Its Values .. 65

The Case of the Variable Execution Time ...66

Summary ...69

Chapter 5: Troubleshooting Query Transformations ■ ..71

What Are Query Transformations? ...71

The 10053 Trace File ...73

How Do I Get a 10053 Trace File? .. 73

What’s in a 10053 Trace File? .. 74

What Is a Query Transformation? ..77

Why Would We Want to Disable Query Transformations? ..82

Optimizer Parameters ...83

Optimizer Hints ..87

Cost Calculations ...90

Summary ...92

Chapter 6: Forcing Execution Plans Through Profiles ■ ...93

What is an SQL Profile? ...93

Where Does SQLT Get Its SQL Profile? ..95

What Can You Do with a SQL Profile? ..99

How Do You Confirm You Are Using an SQL Profile? ..105

How Do You Transfer an SQL Profile from One Database to Another?108

Summary ...109

■ CONTENTS

x

Chapter 7: Adaptive Cursor Sharing ■ ..111

Bind Variables and Why We Need Them ..112

The CURSOR_SHARING Parameter ..112

Bind Peeking ...113

Bind Sensitive and Bind Aware Cursors ...114

Setting Up a Bind Sensitive Cursor .. 114

Examining ACS with a SQLTXTRACT Report ... 118

Does ACS Go Wrong? ...124

Summary ...128

Chapter 8: Dynamic Sampling and Cardinality Feedback ■ ...129

Dynamic Sampling? ..129

What Is Dynamic Sampling? .. 131

How to Control Dynamic Sampling .. 131

How to Find the Value of optimizer_dynamic_sampling ... 134

Dynamic Sampling and Parallel Statements ... 136

What Dynamic Sampling Value Should I Set? .. 136

Cardinality Feedback ...137

How Does Cardinalty Feedback Work? .. 137

How Can You Tell If Cardinality Feedback Is Used? ... 139

When is Cardinality Feedback used? ... 141

How Do Cardinality Feedback and Dynamic Sampling Work Together? .. 141

The Case of the Identical Twins ...141

Summary ...146

Chapter 9: Using SQLTXPLAIN with Data Guard Physical Standby Databases ■ 147

Data Guard Physical Standby Database ..147

SQLTXTRSBY ..148

SQLTXTRACT Limitations ... 148

How Do We Use XTRSBY? ... 150

What Does a XTRSBY Report Look Like? ... 152

■ CONTENTS

xi

The roxtract Tool ..155

How Do We Use roxtract? .. 157

What Do roxtract Reports Look Like? .. 159

Summary ...162

Chapter 10: Comparing Execution Plans ■ ...163

How Do You Use SQLTCOMPARE? ..163

A Practical Example ..164

Collecting the Main Method Repository Data .. 166

Preparing the Main Method Repository Data ... 166

Importing the Respository Data ... 168

Running SQLTCOMPARE ... 169

Reading the SQLTCOMPARE Report ... 171

Summary ...176

Chapter 11: Building Good Test Cases ■ ...177

What Can You Do with Test Cases? ...178

Building a Test Case ..178

A Test Case Step by Step ... 178

The Test Case Files .. 179

The SQL Statement .. 180

How to Build a Test Case Fast (XPRESS.sql) .. 181

Exploring the Execution Plan ...192

Optimizer Parameters .. 193

Adding and Removing Hints .. 194

Versions of the optimizer ... 195

Structure of the SQL .. 195

Indexes .. 196

Setting System Statistics .. 197

Object Statistics .. 198

Debugging the Optimizer ... 198

■ CONTENTS

xii

Other Test Case Utilities ..198

What Does sel.sql Do? ... 199

What Does sqlt_snnnnn_del_hgrm.sql Do? .. 200

What Does sqlt_snnnnn_tcx.zip Do? ... 202

Including Test Case Data ... 204

Summary ...204

Chapter 12: Using XPLORE to Investigate Unexpected Plan Changes ■ 205

When Should You Use XPLORE? ..205

How Does XPLORE Work? ..206

What Can XPLORE Change? ... 206

What XPLORE Cannot Change .. 207

What Is Fix Control? ... 207

What Is a SQL Monitor Report? .. 210

An Example XPLORE Session ..212

Getting Your Test Case Built ... 212

Building the First Script ... 213

Building the Superscript .. 213

Running the Script ... 217

Reviewing the Results ... 219

Finding the Best Execution Plan .. 223

Reviewing the Original Test Case .. 224

Other Information in XPLORE ... 227

Summary ...230

Chapter 13: Trace Files, TRCANLZR and Modifying SQLT behavior ■ 231

10046 Trace ...232

Why Collect 10046 Trace? ... 232

10046 Decode .. 232

How Do We Collect 10046 Trace .. 237

TKPROF ..240

TRCASPLIT ...241

■ CONTENTS

xiii

TRCANLZR ...244

TRCAXTR ...249

Modifying SQLT Behavior ...249

Summary ...253

Chapter 14: Running a Health Check ■ ...255

What Is SQL Health Check? ...255

The sqlhc.sql Script ...256

What sqlhc.sql Produces ... 257

Running the SQLHC Script ... 257

The Main Health Check Report .. 260

The Diagnostics Report.. 264

The Execution Plan Report ... 267

The Monitor Reports .. 268

The sqldx.sql Script ...272

The sqlhcxec.sql Script ...277

Summary ...280

Chapter 15: The Final Word ■ ...281

Tuning Methodology ..281

Why SQLT Is, Hands Down, the Best Tuning Utility ..283

A Word About Platforms ..283

Other Resources ..284

Summary ...284

Appendix A: Installing SQLTXPLAIN ■ ...285

A Standard SQLT Installation ...285

How to Change the Licensing Level after a SQLT Installation ...289

A Remote SQLT Installation ...291

Other Ways to Install SQLT ...291

How to Remove SQLT ..292

■ CONTENTS

xiv

Appendix B: The CBO Parameters (11.2.0.1) ■ ...295

General Approach to Dealing with Hidden Parameters ...295

More Detailed Descriptions of Some Hidden Parameters ...296

_and_pruning_enabled ... 296

_bloom_filters_enabled... 296

_complex_view_merging .. 296

_disable_function_based_index ... 297

_hash_join_enabled .. 297

_optimizer_extended_cursor_sharing_rel .. 297

_optimizer_cartesian_enabled .. 297

_optimizer_cost_model ... 297

_optimizer_ignore_hints ... 297

_optimizer_max_permutations ... 298

_optimizer_use_feedback ... 298

_optimizer_search_limit .. 298

Full List of Parameters ..298

Appendix C: Tool Configuration Parameters ■ ..307

Index ...311

xv

About the Author

Stelios Charalambides has more than 20 years experience working with Oracle
databases. He is OCP certiied from 7 to 11g and has worked as a Senior Consultant
DBA on both sides of the Atlantic, dealing with all aspects of system design,
implementation, and post-production support, solving practical problems in
a wide variety of environments. He now works as a Principal Oracle Support
Engineer developing time- critical solutions for tier-one customers with
high-proile performance problems. hough born in the UK, Stelios now lives
in New Hampshire with his wife, two children, and two dogs. Once this book is
complete, he looks forward to devoting more time to his hobbies.

xvii

About the Technical Reviewer

Mark Bobak is a Senior Oracle DBA at ProQuest Company in Ann Arbor, MI. He’s been working in IT for over 25 years.
For the past 13 years, he has worked as an Oracle DBA. He is an Oracle ACE and a member of the OakTable Network.
He is also active in his local Oracle User Group (SEMOP) and attends and presents at conferences at the local, state,
national, and international levels.

xix

Acknowledgments

Carlos Sierra is the author of SQLTXPLAIN. His enthusiasm, patience, and willingness to listen allowed me to enter
the world of Oracle SQL tuning with SQLT. Without his help and inspiration, this book would not have been possible.
I hope that the text meets his expectations and that I haven’t made any errors in my description of his baby. If I have I
apologize. he error was all mine.

hanks are also due to my irst family within Oracle (he Oracle Performance Group), Chris Crocker, and Cathy
Scully (who had the good sense to hire a Brit) and Mike Matagranno, whose persistence in getting me to move to
Oracle was truly astounding. I hope none of you have regretted that decision. Special mention must go to Mauro
Pagano, whose special knowledge and endless enthusiasm convinced me that I had something useful to say
about SQLT.

Many thanks also to Mike Gervais, my irst manager, whose kindness helped so much during my irst months
at Oracle. Alan Bashy, Nick Meola, and Peter Gadah are fellow members of the performance team who also deserve
special mention. hey are truly awesome and showed me that no matter how much you think you know about
tuning, there is always more to learn. I have been very lucky to come across so many knowledgeable and enthusiastic
colleagues and managers. here isn’t room here to thank them all, and for that I am sorry.

hanks are also due to Professor Garry Hunt who always believed in my potential and taught me that anything is
possible if you put your mind to it.

From Apress, Jonathan Gennick made the inal decision to publish this book, showing faith when others were
doubtful. hanks also to Anamika Panchoo, who put up with my missed deadlines: I’m sorry, I did my best. Last but
by no means least, Chris Nelson’s herculean eforts have made immeasurable improvements to my poor illiterate
scratchings (don’t change that) and allowed me to produce a book I hope will be useful for years to come. Chris
shouted, pushed, and otherwise kept me going by telling me the inish line was just around the corner. For your
patience and hard work I sincerely thank you.

xxi

You are about to read this book on the subject of SQL Tuning using SQLTXPLAIN (also referred to as SQLT for short).
Chances are you know a bit about what this SQLT tool ofers but not much about the story behind it. his foreword
provides some background on how this tool became what it is today. I hope you enjoy this behind-the-scenes look at
the motivations and events that slowly came together over the years as I’ve worked on the tool you’re about to learn.

In the late 1990s I was a “road warrior” like many consultants back then. I was an Oracle “ield support
engineer” with pretty good expertise in manufacturing and SQL tuning, and I had chosen to be part of the Short-term
Assignments Team. (We had two options back then, short or long-term assignments!). I used to travel a lot from site to
site for these assignments.

Manufacturing and SQL Tuning was a good combination for someone like me, willing to go on site and handle
some of the big ires afecting large manufacturing corporations using Oracle ERP. Life was intense, and it was good!
After several week-long assignments I started noticing some patterns: when trying to diagnose a SQL statement
performing poorly, there were many areas to look at, and trace/tkprof would not give me everything I needed to
efectively diagnose SQL tuning issues promptly! hrough my assignments, I developed a set of lexible scripts. hat is
how the legendary coe_xplain.sql came to life.

Karl Daday, my manager at the time, supported my endeavors and actually encouraged me to build my own
set of tools so I could deliver results in a one-week time frame. hus, I used coe_xplain.sql on pretty much every
performance assignment and always with good results. Over time I was glad I developed this little tool, since most of
my enhancement requests for tkprof are still pending.

One day, while I has happily using my coe_xplain.sql personal script, as well as some other scripts I had
developed, a talented DBA in one of the corporations I was working with at the time asked me if he could keep my
set of tools for later use. My concern over leaving behind my toys was that I knew from experience that anything you
code will follow you your entire life, which is both a reward and a curse. If your code has only a few bugs, you do ine.
Otherwise, you feel haunted and hunted for decades!

Nevertheless, I decided to share my coe_xplain.sql and other small tools, with the understanding that their users
would take them “as is.” A year later, the same DBA asked me if I would publish my coe_xplain.sql script in Metalink
(now known as MyOracle Support), so he could keep getting new versions if I decided to keep it updated. his was
a turning point for me. Making a tool available in Metalink back in 2001 meant only one thing to me: I was willing to
compromise to keep this tool free of bugs as much as possible, and I would have to react to enhancement requests
even if that meant declining them all. I knew back then (as I know today) that I always have a hard time saying “no”
when I actually can and want to say “yes.”

So after coe_xplain.sql was published in Metalink, I quickly started getting some questions like: “Can you add this
little tiny functionality to your otherwise nice script?”

Late in 2002 the coe_xplain.sql script had become a large script, and I decided it was time to actually upgrade it
to PL/SQL. hat would mean rewriting the entire functionality but using one PL/SQL package instead of several SQL
statements embedded into one large script. In those days I was still part of a team named the “Center of Expertise.”
hat is why coe_xplain.sql had that preix “coe_”. Today there are many teams within Oracle sharing the same “CoE”
name, so I feel its meaning is somewhat diluted. (Something similar happened to the “BDE” team, which means “Bug
Diagnostics and Escalations.” hat’s the reason why some of my scripts had and still have the preix “bde_”.)

Foreword

■ FOREWORD

xxii

I decided it was time to upgrade coe_xplain.sql to something more robust. I no longer wanted to name my scripts
after the name of the team I was working for. So in 2002, on the second major version, this coe_xplain.sql tool came
to be SQLTXPLAIN, and I published it on Metalink (MyOracle Support) under note 215187.1, which still is its location
today. he name SQLTXPLAIN is loosely derived from “SQL Tuning and Explain Plan”. I had searched the Internet
and had not found any references to this SQLTXPLAIN name. I was trying to avoid collisions with other tool names,
products, or companies, and as of today I have succeeded, at least in regard to this naming!

SQLTXPLAIN was rapidly adopted by many Oracle ERP teams within Oracle Support and gradually through
Oracle Development. Most of the SQLT enhancement requests I used to get in those days were E-Business Suite (EBS)
speciic, so SQLTXPLAIN became mostly a tool to diagnose SQL statements performing poorly within EBS. From 2002
all the way to 2006, this tool was installed inside the application schema, what was APPS for EBS. So SQLTXPLAIN
used to have strong EBS dependencies. It was created inside an application schema, creating and dropping objects
there. But don’t panic! It no longer works like this.

hose years between 2002 and 2006 were diicult for me at Oracle. I was extremely busy developing internal
applications. I was also getting my master’s degree in computer science, so I had a double challenge on my hands.
And that’s not to mention that my wife and I were raising four teenagers! hus, SQLTXPLAIN was practically frozen
until 2007.

I didn’t mention it before, so I will now: SQLTXPLAIN was never an oicial project with Oracle. SQLTXPLAIN
up until 2007 was my weekend pet project (a big one!). I spent pretty much all my personal free time developing and
maintaining this tool. It was my baby and still is today. I am very lucky that my wife Kelly Santana, who also works for
Oracle, has been so very supportive during all these busy years. Without her patience and understanding I would have
had to abandon SQLTXPLAIN and taken it of Metalink years ago!

Late in 2006 I moved to the Server Technologies Center of Expertise (ST CoE) within Oracle. I had been at the
Applications CoE before, and now I was getting into the ST CoE. hat was “the other side of the house,” “the dark side”
as some call it, or simply “the other side.” I took with me all my EBS expertise and all my tools. Steve Franchi, one of
the best managers I have had at Oracle, gave me the green light to keep maintaining my tools, so I was going to be able
to work on SQLTXPLAIN during my regular working hours. hat was a huge incentive for me, so I was very happy at
my new home within Oracle. Until then, most of my scripts were actually worked only at night and on the weekend.
hat’s the problem when your hobby and your job blend so smoothly into one: and on top of that, you have the
privilege of working from home. So today I would say I take care of SQLTXPLAIN pretty much around the clock, every
day of the week. But of course I still sleep and eat!

Once I joined the ST CoE, I was on a mission of my own: I wanted the Server Technologies Support group to
get to know SQLTXPLAIN and actually adopt it as much as EBS, so I requested a meeting with one of the legends
and leaders at the performance support team. his is how I got to meet Abel Macias. When I asked Abel about using
SQLTXPLAIN for ST performance issues, his answer was brusque. I don’t recall his exact words, but the meaning was
something like this: “We won’t use it, because it sucks big time.”

Abel is known for his sometimes no-nonsense (but correct) answers. He is a very humble human being, and is
way too direct in his observations, which can be intimidating. After my initial shock, I asked him why he thought that
way. his opened the door to a short but signiicant list of deiciencies SQLTXPLAIN had. I walked away demoralized
but with a new challenge in front of me: I would take all that constructive criticism and turn it around into big
enhancements to SQLTXPLAIN. After several weeks of hard work (and way too many cups of cofee), I met Abel
again and showed to him all those “adjustments” to SQLTXPLAIN. hen and only then did he like it, and Abel and I
became friends! Today, we ride our bikes together for miles. And even if we don’t want to, we frequently have short but
meaningful conversations on SQL Tuning and SQLTXPLAIN while we enjoy our trail rides, or while having a beer . . .
or two.

With Abel’s input, SQLT became application independent, installed in its own schema, and RAC aware. Since
the name SQLTXPLAIN was so unique, it became the name of the application schema into which all the tool
objects would be installed. Everything looked ine, but there was something bothering me, and it was the fact that
SQLTXPLAIN had been heavily modiied and was requiring more and more maintenance. It was time for a third full
rewrite. Since the code was already big, I knew I would need a lot of dedicated time with no interruptions at all. I
decided to take advantage of all my accumulated vacation time, together with a few holidays; and during December
2009 and January 2010 I pretty much lived in my man-cave developing the third major version of SQLT.

■ FOREWORD

xxiii

I inished with all the details and testing on April 2010. SQLT now had several packages, and it was getting close
to 100,000 lines of code, all developed with two ingers (I still type with two ingers). Some people think SQLT is
developed and maintained by a large team. Sorry to disappoint you if you think this way: SQLT was conceived as a tool
for someone from support to make his/her life easier and is now somehow shared and used by many others working
on the complex task of SQL Tuning. Still the spirit of this tool remains unchanged: a tool to help to diagnose a SQL
statement that performs poorly (or which generates wrong results).

SQLTXPLAIN, on its third major version from April 2010, was rapidly adopted by the Server Technologies
performance team within support. Since I joined the ST CoE I also have had the pleasure to develop two internal
one-week SQL Tuning workshops. After delivering them dozens of times to more than 700 Oracle professionals
around the world, I have collected and incorporated hundreds of enhancements to SQLT that were communicated
verbally during class.

From all the good and smart people providing me with ideas on how to enhance SQLT, I want to mention two
by name, who in addition to Abel have made exceptional contributions to the feature set of the tool: Mauro Pagano
and Mark Jeferys. Mauro, with his constant insight, inspired SQLTXPLAIN’s XPLORE method, which uses brute
force analysis to narrow possible culprits of a regression after an upgrade. Mark, with his strong math and science
background, showed me several mistakes I had made, especially around statistics and test case creation. With all
sincerity, I think SQLT is what it is today thanks to all the constructive feedback I constantly get from very smart
people. Sometimes the feedback is brutal, but for the most part it is just asking me to incorporate a thing here or
there, or to ix a small bug. As enhancement examples I would mention some big ones: adding Siebel and PeopleSoft
awareness in SQLT, and all the health-checks it performs.

I consider myself a very lucky guy to have had the opportunity to work for such a great company as Oracle
since 1996; I have also had some great managers who have been very supportive in taking what I believe is the
right approach to diagnose diicult SQL Tuning issues. I do not regret a single minute of my personal time that I
have dedicated to this SQLTXPLAIN tool. At the beginning it was from me and to me. Now it is from me and many
other bright minds to basically anybody who wants to get his/her hands into some serious SQL Tuning in an Oracle
database.

When Stelios Charlambides asked my opinion about him writing a book in which SQLXPLAIN was a central part,
I felt honored and happy. Many people have asked me: “When can we have a book on SQLTXPLAIN?” If you are one
of those people, please enjoy what Stelios has developed during his own personal time, and thank him for this book!
I truly hope you get to enjoy SQLTXPLAIN and even SQL Tuning.

I always say that SQL Tuning is like sushi, you either love it or you hate it! I hope that as you get to learn more,
you’ll fall in love with it as I did back in the 1990s. Also keep in mind that with SQL Tuning you never inish learning.
Good foundations, curiosity, perseverance, and experience—these are just some of the ingredients to one day feeling
comfortable doing SQL Tuning. Cheers!

 —Carlos Sierra, author of SQLTXPLAIN

	Oracle SQL Tuning with Oracle SQLTXPLAIN
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Introduction to SQLTXPLAIN
	Chapter 2: The Cost-Based Optimizer Environment
	Chapter 3: How Object Statistics Can Make Your Execution Plan Wrong
	Chapter 4: How Skewness Can Make Your Execution Times Variable
	Appendix A: Installing SQLTXPLAIN

	Appendix B: The CBO Parameters (11.2.0.1)

	Appendix C: Tool Configuration Parameters

